NUCLEAR MODIFICATION FACTOR AT LARGE RAPIDITIES AT RHIC

Gergely Gábor Barnaföldi – RMKI,ELTE

in collaboration with: Péter Lévai – KFKI RMKI; Gábor Papp – ELTE; George Fai – ELTE, Kent State University;

> Quark Matter 2005 3-9. August 2005 – Budapest, Hungary

Questions and Motivation

- I. We have studied π production in (pA)dAu collision.
 - Suppression were found at $\eta > 0, h^+, h^-$ spectra at BRAHMS
 - However no suppression at midrapidity at PHENIX.

II. The jet-suppression appears in case of AA collisions

Suppression in π spectra in AuAu at RHIC \Longrightarrow QGP

How interplay the two effects in our modell at $\eta > 0$ for AA'?

Hunting for Nuclear Effects (Cronin) at High- $p_T - R_{AA'}$

Historically the Cronin effect:increased particle production in $3 \text{ GeV} < p_T < 6 \text{ GeV}$ range (1975)"increased" means more particlesare produced in pA than expectedfrom N_{bin} scaled pp collisions

Nuclear modification factor

→ measuring Cronin effect: $R_{AA} = \frac{1}{N_{bin}} \frac{dN_{AA}/dy d^2 p_T}{dN_{pp}/dy d^2 p_T}$ → theoretical def.:

 $R_{AA'}^{\pi} := \frac{d\sigma^{AA' \to \pi}/d^3p(\text{"shadowing+multiscattering+ jet-quenching"})}{d\sigma^{AA' \to \pi}/d^3p(\text{"NO nuclear effect"})}$

I/1. pQCD Improved Parton Model for pA Collisions

$$E_{\pi} \frac{\mathrm{d}\sigma_{\pi}^{pA}}{\mathrm{d}^{3}p_{\pi}} \sim f_{a/p}(x_{a}, Q^{2}; k_{T}) \otimes f_{b/A}(x_{b}, Q^{2}; k_{T}, b) \otimes \frac{\mathrm{d}\sigma^{ab \to cd}}{\mathrm{d}\hat{t}} \otimes \frac{D_{\pi/c}(z_{c}, \widehat{Q}^{2})}{\pi z_{c}^{2}}$$

 $f_{a/A}(x_a, Q^2; k_T, b)$: Parton Dist. Function (PDF), at scale Q^2 $D_{\pi/c}(z_c, \widehat{Q}^2)$: Fragmentation Function for π (FF), at scale \widehat{Q}^2 $\frac{\mathrm{d}\sigma^{ab \to cd}}{\mathrm{d}\hat{t}}$: Partonic cross section

I/2. Collision Geometry and Shadowing in $pA \rightarrow \pi$

$$E_{\pi} \frac{d\sigma_{\pi}^{pA}}{d^{3}p} = \int d^{2}b t_{A}(b) \quad \int \dots f_{a/A} (x_{a}, Q^{2}; \dots) \dots$$
(a) Nuclear thickness function:

$$t_{A}(b) = \int dz \,\rho(b, z) \text{ normalized as: } z_{A} \qquad b$$

$$db dz_{A} \qquad f_{A}(b) d^{2}b \text{ , where } \rho(b, z) \text{ nucl. density}$$
(b) Nuclear Shadowing – modified PDFs inside nucleus
$$f_{a/A} (x, Q^{2}; b) = S_{a}^{A}(x, b) \left[\frac{Z}{A} f_{a/p} (x, Q^{2}) + \left(1 - \frac{Z}{A} \right) f_{a/n} (x, Q^{2}) \right]$$

 $S_a^A(x, b)$: b-dependent or independent shadowing function; HIJING: S. Li, X.-N. Wang: Phys.Letts. **B527**,85(2002) A atomic- and Z the proton number

I/2. (a) Phenomenological introduction of intrinsic k_T

Introducing intrinsic k_T for colliding partons (G. Fai's talk)

Phenomenological assumption: PDFs are modified1 dimensional PDFs are changed to 1+2 dimensional ones

$$\mathrm{d}x f_{a/p}(x,Q^2) \longrightarrow \mathrm{d}x \,\mathrm{d}^2 k_T g_{pp}(\vec{k}_T) f_{a/p}(x,Q^2)$$

where $g(\vec{k}_T)$ is a Gauss distribution function :

$$g_{pp}(\vec{k}_T) = \frac{e^{-\vec{k}_T^2/\langle k_T^2 \rangle}}{\pi \langle k_T^2 \rangle} \text{ and } \langle k_T^2 \rangle = \frac{4 \langle k_T \rangle^2}{\pi}$$

Baseline $\langle k_T^2 \rangle$ values for pp: Phys. Rev. **C65** 034903 (2002) $\langle k_T^2 \rangle \sim$ value agrees with measured values by PHENIX,

I/2. (a) Multiple Scattering (The Cronin Effect)

Saturated NN collison numbers (in $pA \rightarrow \pi$)

• improve the Glauber model:

$$E_{\pi} \frac{\mathrm{d}\sigma_{\pi}^{pA}}{\mathrm{d}^{3}p} = \int \mathrm{d}^{2}b \ t_{A}(b) E_{\pi} \frac{\mathrm{d}\sigma_{\pi}^{pp}(\langle k_{T}^{2} \rangle_{pA}, \langle k_{T}^{2} \rangle_{pp})}{\mathrm{d}^{3}p}$$

$$\langle k_T^2 \rangle_{pA} = \langle k_T^2 \rangle_{pp} + C h_{pA}(b)$$

Total broadening = pp baseline + nuclear broad.

See details in PRC65 034903 (2002) and hep-ph/0212249

 $\begin{array}{l} h(\nu_A(b)-1): \mbox{ number of effective NN collisions } \nu_{max} = 3-4 \\ C: \mbox{ (average mom. broadening)}^2 \ / \ {\rm coll.} \ C \approx 0.35 \ {\rm GeV}^2 \\ t_A(b): \mbox{ nuclear thickness function} \end{array}$

I/2. (b) Phenomenological Shadowing functions

II. APPLICATION OF THE MODEL FOR

π^0 **PRODUCTION IN** dAu **COLLISIONS**

Cronin effect in different Centralities in dAu collision at PHENIX

G.G. Barnaföldi et al.: J. Phys. G30, S1125

Cronin on min. bias $dAu \to \pi^0$ at PHOBOS and BRAHMS $\eta > 0$

BRAHMS data: nucl-ex/0403005 and PHOBOS data: nucl-ex/0406017

Cronin on min. bias $dAu \to \pi^0$ as inverted, $\eta < 0$

III. IMPROVING THE APPLICATION FOR

π^0 **PRODUCTION IN** *AA* **COLLISIONS**

III. A π -suppression in AuAu collisions at RHIC energies

GLV jet-quenching in thin plasma approximation $L \sim \lambda_g$:

$$\Delta E_{GLV} \sim \frac{L^2 \mu^2}{\lambda_g} \log \frac{E}{\mu}$$

Energy loss of jets decreases the p_c momenta of c before fragmentation:

$$\frac{D_{\pi/c}(z_c,Q'^2)}{\pi z_c^2} \rightarrow \frac{z_c^*}{z_c} \frac{D_{\pi/c}(z_c^*,Q'^2)}{\pi z_c^2}, \text{ alol } z_c^* = \frac{z_c}{1-\Delta E/p_c},$$

$$A = \underbrace{k_{d}(x_j,x_{r,j}^2,b)}_{d} = \underbrace{$$

8. August 2005 – QM '05

Calculated $R_{AA}^{\pi^0}$ for central AuAu and CuCu Collisions

AuAu, dAu and central CuCu data for π^0 by PHENIX, mid-central CuCu by STAR

Jet-tomography in AuAu Collisions at PHENIX (y = 0)

Jet-tomography in AuAu Collisions at $(y \approx 2.2)$

Data: by PHENIX at y = 0 just for comparison

Comparing π^0 data in AuAu at $\eta = 3.1$ and y = 0

AuAu at BRAHMS $\eta = 3.1$ and PHENIX y = 0

Larger shadowing in dAu at $\eta > 0$ Additional (exp.) information:

$$- R_{AuAu}(y=0) \approx R_{AuAu}(y>0)$$

$$-R_{CP} \ge R_{AA'}$$

– See D. Rölich's talk

- \implies Shadowing effect is stronger
- \implies Travelling length getting smaller as going more forward
- \implies Smaller L/λ can be extracted in the forward π production

Summary – Outlook

Goal: Extracting the L/λ_g values in AA' in all direction

- I. Description of the π^0 production in dAu collisions at all η
 - Baseline: pp results for intrinsic- k_T , $\langle k_T^2 \rangle$
 - HIJING shad. + Multiscat. + Sat. Galuber model
 - \implies RHIC data well reproduced (min. bias)
 - \implies NO suppression, NO need for extra shadowing
 - \implies For consistency we are waiting for $\eta < 0$ data
- II. Results for π^0 in AuAu and CuCu at $\eta = 0$ and $\eta > 0$

- GLV jet-quenching with opacity parameter $n = L/\lambda$

 \implies As we expected, $R_{AA}(\eta > 0)$ needs smaller L/λ .

- ... post conference data analysis
 - Extracting opacity in the liu of new data

 \implies At least, but not last: thank You for the nice exp. data