Probing the Quark Gluon Liquid using Transverse Momentum Fluctuations

Sean Gavin

Wayne State University

onset of thermal equilibration – common centrality dependence of $\langle p_t \rangle$, p_t and charge dynamic fluctuations Quark Matter 04

I. Fluctuations measure two-body correlations

• multiplicity and p_t fluctuation observables

II. Multiple-Scattering Contributions

- thermalization *PRL* 92 (2004) 162301
- radial flow Abdel-Aziz & SG, DPF 04

III. Hydrodynamic Correlations

• viscosity info from *p*_t fluctuations?

with M. Abdel-Aziz in progress

Dynamic Fluctuations

variance minus thermal contribution

Pruneau, Voloshin & S.G.

multiplicity N

$$R = \frac{\langle N^2 \rangle - \langle N \rangle^2 - \langle N \rangle}{\langle N \rangle^2}$$
mean p_t
 $\langle \delta p_{t1} \delta p_{t2} \rangle = \frac{1}{\langle N_{\text{pairs}} \rangle} \langle \sum_{\text{pairs } i \neq j} \delta p_{tj} \rangle$
 $\delta p_t = p_t - \langle p_t \rangle$

correlation function:
$$r(p_1, p_2) = \text{pairs} - (\text{singles})^2$$

 $R \propto \iint r(p_1, p_2) dp_1 dp_2 \qquad \langle \delta p_{t_1} \delta p_{t_2} \rangle \propto \iint \delta p_{t_1} \delta p_{t_2} r(p_1, p_2) dp_1 dp_2$

Thermalization

scattering drives particles toward local thermal equilibrium

fluctuations enhanced

$$\langle \delta p_{t1} \delta p_{t2} \rangle \propto \iint \delta p_{t1} \delta p_{t2} r(p_1, p_2)$$

 $\propto \iint \delta T(x_1) \delta T(x_2) r(x_1, x_2) dx$

- $p_t \propto \text{local temperature } T(x), \text{ difference } \delta T = T(x) \langle T \rangle$
- correlation function $r(x_1, x_2)$ more likely to find particles near "hot spots"
- approach to equilibrium \rightarrow Boltzmann eq'n with Langevin noise

Onset of Thermalization?

Data \rightarrow Pruneau's talk Monday, 4c

thermalization \Rightarrow centrality dependence of mean pt and fluctuations

• describes peripheral collisions

PRL 92 (2004) 162301; Quark Matter 04

deviation in central collisions – radial flow?

Collective Flow

near equilibrium: pressure \Rightarrow flow Voloshin

blue shifted temperature

$$T_{eff} \approx T \left(\frac{1 + v_r}{1 - v_r} \right)^{1/2}$$

radial velocity v_r Schnedermann, et al.

flow increases with centrality

STAR data: $\langle v_r \rangle = 0.59 \pm 0.05$ for central collisions Barannikova, nucl-ex/0403014

Thermalization + Flow

measured $\langle p_t \rangle$ at 200 GeV fixes $T_{e\!f\!f}$ vs centrality

blue-shift:

 enhances equilibrium contribution

$$\langle \delta p_{t1} \delta p_{t2} \rangle \propto \int \delta T_1 \delta T_2 r_{12}$$

 $\propto T_{eff}^2 \propto \frac{1 + v_r}{1 - v_r}$

 compensates effect of longitudinal cooling

Flow Contribution

dependence on maximum $p_{t, max}$

 $F_{p_t} \approx \langle N \rangle \langle \delta p_{t1} \delta p_{t2} \rangle / 2\sigma^2$

 $\sigma^2 = \langle p_t^2 \rangle - \langle p_t \rangle^2$

explained by blueshift?

$$F_{p_t}^{obs} \propto \frac{\langle N \rangle_{obs}}{\langle N \rangle} = 1 - e^{-p_{t,\max}/T_{eff}} \left(1 + p_{t,\max}/T_{eff} \right) \qquad T_{eff} \approx T \left(\frac{1 + v_r}{1 - v_r} \right)^{1/2}$$

needed: more realistic hydro + flow fluctuations

Hydrodynamic Density Correlations

hydro: stress-energy tensor $T^{\mu\nu}$ and current j^{μ} number density $n = j^0$ and momentum density $g^i = T^{0i}$

phase space density *f*(*x*,*p*) fluctuates:

$$r(p_1, p_2) = \int dx_1 dx_2 \left(\left\langle f_1 f_2 \right\rangle - \left\langle f_1 \right\rangle \left\langle f_2 \right\rangle - \delta_{12} \left\langle f_1 \right\rangle \right)$$

multiplicity fluctuations probe **density** $n(x) = \int dp f(x, p)$

$$R = \int dp_1 dp_2 \, \frac{r(p_1, p_2)}{\langle N \rangle^2}$$

Measured: NA49; PHENIX; PHOBOS

density correlation function

$$r_n = \langle n(x_1)n(x_2) \rangle - \langle n(x_1) \rangle \langle n(x_2) \rangle \qquad \Delta r = r - r_{eq}$$

Hydrodynamic Density Correlations

hydro: stress-energy tensor $T^{\mu\nu}$ and current j^{μ} number density $n = j^0$ and momentum density $g^i = T^{0i}$

phase space density *f*(*x*,*p*) fluctuates:

$$r(p_1, p_2) = \int dx_1 dx_2 \left(\left\langle f_1 f_2 \right\rangle - \left\langle f_1 \right\rangle \left\langle f_2 \right\rangle - \delta_{12} \left\langle f_1 \right\rangle \right)$$

multiplicity fluctuations probe **density** $n(x) = \int dp f(x, p)$

$$R = \int dx_1 dx_2 \frac{\Delta r_n(x_1, x_2)}{\langle N \rangle^2}$$

density correlation function

$$r_n = \langle n(x_1)n(x_2) \rangle - \langle n(x_1) \rangle \langle n(x_2) \rangle \qquad \Delta r = r - r_{eq}$$

Hydrodynamic Momentum Correlations

 p_t fluctuations probe **transverse momentum density** $g_t(x) = \int dp \ p_t f(x, p)$

$$\left\langle N_{pair}\right\rangle \left\langle \delta p_{t1} \delta p_{t2} \right\rangle = \int dp_1 dp_2 \left(p_{t1} - \left\langle p_t \right\rangle \right) \left(p_{t2} - \left\langle p_t \right\rangle \right) r(p_1, p_2)$$

momentum density correlation function

$$r_g = \langle g_t(x_1)g_t(x_2) \rangle - \langle g_t(x_1) \rangle \langle g_t(x_2) \rangle \qquad \Delta r = r - r_{eq}$$

observable:
$$S = \int dx_1 dx_2 \frac{\Delta r_g(x_1, x_2)}{\langle N_{pair} \rangle} = \langle \delta p_{t1} \delta p_{t2} \rangle + \langle p_t \rangle^2 \frac{R}{1+R}$$

measured $\langle \delta p_{tl} \delta p_{t2} \rangle$ plus HIJING $R \Rightarrow r_g$ and r_n are **comparable**

Hydrodynamic Momentum Correlations

 p_t fluctuations probe **transverse momentum density** $g_t(x) = \int dp \ p_t f(x, p)$

$$\left\langle N_{pair}\right\rangle \left\langle \delta p_{t1} \delta p_{t2} \right\rangle = \int dx_1 dx_2 \left[\Delta r_g(x_1, x_2) - \left\langle p_t \right\rangle^2 \Delta r_n(x_1, x_2) \right]$$

momentum density correlation function

$$r_g = \langle g_t(x_1)g_t(x_2) \rangle - \langle g_t(x_1) \rangle \langle g_t(x_2) \rangle \qquad \Delta r = r - r_{eq}$$

observable:
$$S = \int dx_1 dx_2 \frac{\Delta r_g(x_1, x_2)}{\langle N_{pair} \rangle} = \langle \delta p_{t1} \delta p_{t2} \rangle + \langle p_t \rangle^2 \frac{R}{1+R}$$

measured $\langle \delta p_{tl} \delta p_{t2} \rangle$ plus HIJING $R \Rightarrow r_g$ and r_n are **comparable**

Evolution of Momentum Fluctuations

assume average boost invariant radial flow

 $\langle g_t \rangle = (e + P)\gamma^2 v_r$

shear viscosity damps small fluctuations $g_t - \langle g_t \rangle$

viscous hydro: Muronga et al.; Teaney et al.; Moore et al.; Hirano and Gyulassy flow fluctuations: Mrowczynski and Shuryak

diffusion of small fluctuations

$$\left(\frac{\partial}{\partial t} - \Gamma_s \nabla^2\right) g_t = 0$$

momentum diffusion length

$$\Gamma_s = \frac{\eta}{e+P}$$

shear viscosity η energy density e, pressure P

Viscosity Broadens Rapidity Correlations

analogous effect in charge diffusion

Stephanov & Shuryak; Abdel-Aziz & Gavin; Koide; Sasaki et al.; Wolchin; Teaney & Moore; Bass, Pratt & Danielowicz

viscous diffusion + Bjorken flow

$$\frac{\partial g_t}{\partial \tau} = \frac{v}{\tau^2} \frac{\partial^2 g_t}{\partial y^2} \longrightarrow \frac{d}{d\tau} \Delta V = \frac{2v}{\tau^2}, \qquad \Delta V = \int y^2 g_t \, dy$$

random walk in rapidity y vs. proper time τ

$$\Delta V = 2\Gamma_s \left(\frac{1}{\tau_0} - \frac{1}{\tau}\right)$$

momentum diffusion length $\Gamma_s = \eta/(e+P)$ formation at τ_0

How Much Viscosity?

sQGP core + hadronic corona

see Hirano & Gyulassy

two extreme scenarios: sticky liquid $\Gamma_{pQGP} \sim \Gamma_{HRG} \sim 2 \text{ fm}$ perfect liquid $\Gamma_{sQGP} \sim (4 \ \pi T_c)^{-1}$, $\Gamma_{HRG} \sim 2 \text{ fm}$

fluctuations, rapidity window Δ :

- solve diffusion eq'n
- Gaussian $r_{g'}$ width σ
- initial $\sigma_0 \sim 0.25 \sim$ balance function

$$\langle N \rangle S \propto \iint_{\Delta} r_g \, dy_1 dy_2$$

 $\sigma^2 = \sigma_0^2 + 2\Delta V(\tau_f)$

 $\begin{array}{c}
1 \\
0.8 \\
N \rangle S \\
V \rangle S_{\text{max}} \\
0.4 \\
0.2 \\
0
\end{array}$

1

0

2

Δ

3

4

Summary

p_t fluctuations from 20 to 200 GeV

- peripheral collisions \Rightarrow onset of thermalization
- central \Rightarrow flow

multiple scattering phenomena

- random walk in momentum space
- broadens width of rapidity distribution

testing the perfect liquid \rightarrow viscosity info

- diffusion coefficient ∝ shear viscosity
- compare rapidity width of momentum fluctuations for different projectile sizes and energies
- cross-check: combine with other indirect viscosity measures, e.g., mach cone Casalderry-Solana, Shuryak & Teaney

more participants $N \Rightarrow$ longer lifetime \Rightarrow smaller survival probability S

$$\langle p_t \rangle = \langle p_t \rangle_0 S + \langle p_t \rangle_e (1 - S)$$

Boltzmann equation +

survival probability

•
$$S = (\tau_0 / \tau_F)^{\alpha}$$

- equilibrium cooling $\left\langle p_{t}\right\rangle _{e} \propto (au _{0} / au _{F})^{\gamma}$
- centrality dependence $au_F \propto N^x, \alpha \propto N^y$

$$\tau_F(0) = 6 \text{ fm}, \tau_0 = 1 \text{ fm}, T_0 = 450 \text{ MeV}$$

 $\alpha(0) = 4, \gamma = 0.15, x = 1, y = 1/2$

Nonequilibrium Dynamic Fluctuations

Boltzmann equation with Langevin noise \Rightarrow phase-space correlations \Rightarrow dynamic fluctuations

simple limit: initial correlations equilibrium-like

 $\left< \delta p_{t1} \delta p_{t2} \right>_0$

 $\langle \delta p_{t1} \delta p_{t2} \rangle_{le}$

S

$$\left\langle \delta p_{t1} \delta p_{t2} \right\rangle = \left\langle \delta p_{t1} \delta p_{t2} \right\rangle_0 S^2 + \left\langle \delta p_{t1} \delta p_{t2} \right\rangle_{le} \left(1 - S^2 \right)$$

initial fluctuations - production mechanism

near equilibrium fluctuations – range of temperatures in the volume **survival probability** vs. centrality from $\langle p_t \rangle$ data

compute initial and local equilibrium fluctuations – is magnitude reasonable?

Effect of Flow on Mean p_t

radial flow \rightarrow blue shift \rightarrow increases local equilibrium mean p_t

$$\langle p_t \rangle = \langle p_t \rangle_0 S + \langle p_t \rangle_e (1 - S) \text{ with } \langle p_t \rangle_e \approx \langle p_t \rangle_{th} \left(\frac{1 + v_r}{1 - v_r} \right)^{1/2}$$

velocity vs. centrality

fit: coincides with $\frac{1}{1/2}$

$$T_{eff} \approx T \left(\frac{1 + v_r}{1 - v_r} \right)^{1/2} \approx const.$$

fixed freeze out temp in comoving frame

Initial Fluctuations

AA collision:

M participant nucleons → independent strings

multiplicity $\propto M$ variance $R_{AA} \propto M^{-1}$

$$\left\langle \delta p_{t1} \delta p_{t2} \right\rangle = \frac{1}{\left\langle N(N-1) \right\rangle} \left\langle \sum_{i \neq j} \delta p_{ti} \delta p_{tj} \right\rangle$$
$$\left\langle N(N-1) \right\rangle = \left\langle N \right\rangle^2 \left(1 + R_{AA}\right)$$

$$\left< \delta p_{t1} \delta p_{t2} \right> \approx \frac{2 \left< \delta p_{t1} \delta p_{t2} \right>_{pp}}{M} \left(\frac{1 + R_{pp}}{1 + R_{AA}} \right)$$

ISR data $\rightarrow \langle \delta \rho_{t1} \delta \rho_{t2} \rangle_{pp}$; HIJING R_{pp} , R_{AA}

Fluctuations Near Equilibrium

correlations from non-uniformity – more likely to find particles near "hot spots" \rightarrow spatial correlation function

$$\left\langle \delta p_{t1} \delta p_{t2} \right\rangle_e \propto \iint \delta T(x_1) \delta T(x_2) r(x_1, x_2) dx_1 dx_2$$

assume:

- longitudinal Bjorken expansion up to freeze out time
- independent longitudinal and transverse d.o.f.
- $\delta p_t \propto \delta T(x)$ independent of rapidity
- gaussian densities and correlation function

obtain:

$$\left< \delta p_{t1} \delta p_{t2} \right>_e \approx \frac{\left< p_t \right>^2 R_{AA}}{1 + R_{AA}} F(\xi / R_t)$$

transverse size R_t , correlation length ξ

