TeV-scale Black Holes

Sabine Hossenfelder

University of Arizona

SH, Ben Koch and Marcus Bleicher: hep-ph/0507138, hep-ph/0507140

・ロト ・ 同ト ・ モト ・ モト

Intro

Extra Dimensions Black Holes at the LHC Black Hole Remnants at the LHC

Black Holes as Physics Meeting Point

Intro Extra Dimensions Black Holes at the LHC

Black Hole Remnants at the LHC

Black Holes as Physics Meeting Point

General Relativity

Thermodynamics

Particle Physics

Quantum Field Theory

String Theory

< ロト (同) (三) (三)

Why Extra Dimensions

Sabine Hossenfelder TeV-scale Black Holes

・ロト ・ 同ト ・ モト ・ モト

Why Extra Dimensions

Top down

<□> <□> <□> <□> <□> <□>

Why Extra Dimensions

Top down

<□> <□> <□> <□> <□> <□>

Why Extra Dimensions

Top down

Extra Dimensions

Why Extra Dimensions

Top down

Extra Dimensions

"Science may be described as the art of systematic over-simplification."

Karl Popper, The Observer, August 1982

▲□▶ ▲□▶ ▲三▶ ▲

The ADD-Model

- d+3 space like dimensions (bulk)
- Compactified to radius R
- Only gravitons are allowed into all dimensions
- SM particles bound to 3-dimensional submanifold (brane)

Arkani-Hamed, Dimopoulos and Dvali, Phys. Lett. B **429**, 263 (1998) Antoniadis, Arkani-Hamed, Dimopoulos and Dvali, Phys. Lett. B **436**, 257 (1998) Arkani-Hamed, Dimopoulos and Dvali, Phys. Rev. D **59**, 086004 (1999)

<□> <□> <□> <□> <□> <□> <□>

The ADD-Model

- d+3 space like dimensions (bulk)
- Compactified to radius R
- Only gravitons are allowed into all dimensions
- SM particles bound to 3-dimensional submanifold (brane)

<ロト <部ト < 注ト < 注ト

The ADD-Model

- d+3 space like dimensions (bulk)
- Compactified to radius R
- Only gravitons are allowed into all dimensions
- SM particles bound to 3-dimensional submanifold (brane)
- + Solves hierarchy problem $m_p^2 = R^d M_f^{d+2}$

The ADD-Model

- d+3 space like dimensions (bulk)
- Compactified to radius R
- Only gravitons are allowed into all dimensions
- SM particles bound to 3-dimensional submanifold (brane)
- + Solves hierarchy problem $m_p^2 = R^d M_f^{d+2}$
- Large radii $1/R \sim {
 m eV}$.. 10 MeV

Black Holes in Extra Dimensions

In large extra dimensions (ADD)

- Gravity stronger at small distances \Rightarrow horizon radius larger
- For mass $M \sim 1 \text{ TeV}$:

 $R_H \sim 2 \times 10^{-38} {
m fm}$ without $R_H \sim 2 \times 10^{-4} {
m fm}$ with extra dim.

《口》 《聞》 《臣》 《臣》 三臣

Black Holes in Extra Dimensions

In large extra dimensions (ADD)

- Gravity stronger at small distances \Rightarrow horizon radius larger
- For mass $M \sim 1$ TeV :

 $R_H \sim 2 \times 10^{-38} {
m fm}$ without $R_H \sim 2 \times 10^{-4} {
m fm}$ with extra dim.

Collider produced black holes radius $R_H \ll R$ masses $\sim \text{TeV}$

(日) (四) (王) (王) (王)

Black Holes in Extra Dimensions

In large extra dimensions (ADD)

- Gravity stronger at small distances \Rightarrow horizon radius larger
- For mass $M \sim 1$ TeV :

 $R_H \sim 2 \times 10^{-38} {\rm fm}$ without $R_H \sim 2 \times 10^{-4} {\rm fm}$ with extra dim.

 At the LHC partons can come closer than their Schwarzschild horizon — a black hole can be created!

Giddings and Thomas, Phys. Rev. D 65 056010 (2002)

(日) (同) (王) (王)

Cross-section of Black Holes

- Cross section $\sigma \sim \pi R_H^2$ is function of \sqrt{s}
- Threshold $\Theta(M-M_{min})$, one expects $M_{min} \sim M_f$
- Model with colliding wave-packets in Aichelburg-Sexl geometry and examine spacetime for horizons
- Integrate over PDFs for hadron collisions

· □ ▷ · (司 ▷ · (글 ▷ · (글 ▷

Production of Black Holes

Image: A math the second se

∃ ⊳

Evaporation of Black Holes

The evaporation proceeds in 3 stages:

Evaporation of Black Holes

The evaporation proceeds in 3 stages:

 Balding phase: hair loss – the black hole radiates off angular momentum and multipole moments

Evaporation of Black Holes

The evaporation proceeds in 3 stages:

- Balding phase: hair loss the black hole radiates off angular momentum and multipole moments
- **2** Hawking phase: thermal radiation into all particles of the standard model as well as gravitons Black hole thermo: $T = \kappa/2\pi$ and dS/dM = 1/T

< 17 ▶

- - E - F

Evaporation of Black Holes

The evaporation proceeds in 3 stages:

- Balding phase: hair loss the black hole radiates off angular momentum and multipole moments
- **2** Hawking phase: thermal radiation into all particles of the standard model as well as gravitons Black hole thermo: $T = \kappa/2\pi$ and dS/dM = 1/T
- S Final decay or remaining black hole relic

Evaporation of Black Holes

The evaporation proceeds in 3 stages:

- Balding phase: hair loss the black hole radiates off angular momentum and multipole moments
- **2** Hawking phase: thermal radiation into all particles of the standard model as well as gravitons Black hole thermo: $T = \kappa/2\pi$ and dS/dM = 1/T
- S Final decay or remaining black hole relic

Numerical investigation: black hole event generator CHARYBDIS

Tanaka et al, [arXiv:hep-ph/0411095]; Harris et al, [arXiv:hep-ph/0411022]

Why Black Hole Remanants

Information loss, modified gravity, hair ...

A simple argument:

- Compton-wavelength $\lambda \sim 1/E$, Schwarzschild-radius $R_H \sim E/m_p^2$
- R_H should not be $< \lambda$, because of the uncertainty principle
- ightarrow But would happens for black hole with $E < m_p$

Why Black Hole Remanants

Information loss, modified gravity, hair ...

A simple argument:

- Compton-wavelength $\lambda \sim 1/E$, Schwarzschild-radius $R_H \sim E/m_p^2$
- R_H should not be $< \lambda$, because of the uncertainty principle
- \rightarrow But would happens for black hole with $E < m_p$

Also:

• Evaporation of $\lambda > R_H$ not possible

· □ ▷ · (司 ▷ · (글 ▷ · (글 ▷

- Emission of $E \sim 1/\lambda$ larger than $M \sim R_H m_p^2$ is not possible
- Evaporation stops when largest possible wavelength carries already too much energy
 - ightarrow Black hole becomes stable at $M \sim m_p$

Observables of Black Holes

- Multi-jet like events
- Momentum cut-off at $\sim M_f$
- Thermal spectrum \rightarrow yields d and M_f

イロト イロト イヨト イ

∃ ⊳

Observables of Black Holes

- Multi-jet like events
- Momentum cut-off at $\sim M_f$
- Thermal spectrum \rightarrow yields d and M_f

→ Are significantly modified through the formation of a remnant!

· □ ▷ · (司 ▷ · (글 ▷ · (글 ▷

 p_T -Spectrum of decay products before fragmentation

- Final decay makes an important contribution to p_T-spectrum
- Remnant production makes a significant difference
- After fragmentation, difference is less prominent but still present

$\sum p_T$ -Spectrum of black hole event

• Missing p_T is increased in presence of remnants

<□> <□> <□> <□> <□> <□> <□>

Summary

- Effective models with extra dimensions quantify first effects beyond the standard model
- Black hole production will become important with strong gravitational effects
- Numerical tools for black hole events available
- New: Signatures of black hole event with possible remnant are significantly modified
- \longrightarrow Exciting test for the onset of quantum gravity

More details: hep-ph/0507138, hep-ph/0507140

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A