Resolution of Several Puzzles at Intermediate p_T and Recent Developments in Correlation

> Rudolph C. Hwa University of Oregon

> > Quark Matter 05

Budapest, Hungary, August 2005

Puzzles at intermediate p_{T}

QM04

- Proton/pion ratio
 Azimuthal anisotropy
- 3. Cronin effect in pion and proton production
- 4. Forward-backward asymmetry in dAu collisions
- 5. Same-side associated particle distribution

Correlations

- 1. Correlation in jets: distributions in $\Delta\eta$ and $\Delta\phi$
- 2. Two-particle correlation without triggers
- 3. Autocorrelations
- 4. Away-side distribution (jet quenching)

Work done in collaboration with

Chunbin Yang (Hua-Zhong Normal University, Wuhan) Rainer Fries (University of Minnesota)

Zhiguang <u>Tan</u> (Hua-Zhong Normal University, Wuhan) Charles <u>Chiu</u> (University of Texas, Austin)

In the recombination model

inclusive distribution of pions in any direction \vec{P}

 π production in AuAu central collision at 200 GeV

Hwa & CB Yang, PRC70, 024905 (2004)

compilation by R.Seto (UCR)

Puzzle #2 Azimuthal anisotropy

Molnar and Voloshin, PRL 91, 092301 (2003).

<u>Parton coalescence</u> implies that $v_2(p_T)$ scales with the number of constituents

Unchallenged for ~30 years.

If the medium effect is before fragmentation, then α should be independent of h= π or p

$$\alpha_{p} > \alpha_{\pi}$$
Cronin et al, Phys.Rev.D (1975)
 $R_{CP}^{p} > R_{CP}^{\pi}$
STAR, PHENIX (2003)

R_{CP} for d-Au collisions

Hwa & CB Yang, PRL 93, 082302 (04). PRC 70, 037901 (04).

Argument does not extend to $5q \rightarrow \Theta$, $6q \rightarrow d$ nor to higher p_T because of ST and SS recombination.

Backward-forward ratio at intermed. p_T

in d+Au collisions (STAR)

Forward production in d+Au collisions

Hwa, Yang, Fries, PRC 71, 024902 (2005)

Underlying physics for hadron production is not changed from backward to forward rapidity.

Puzzle #5: Associated particle pT distribution (near side)

STAR : nucl-ex/0501016

Trigger $4 < p_T < 6 \text{ GeV/c}$

Hwa & Tan, nucl-th/0503060

Recombination model

Correlations

Are these peaks related? How?

For STST recombination

with background subtracted

$$F_{4}^{tr-bg} = \sum \int \cdots (\mathbf{ST'})_{13} \underbrace{(\mathbf{T'T'} - \mathbf{TT})}_{24} + \underbrace{(\mathbf{ST'})_{13}}_{13} \underbrace{(\mathbf{ST'})_{24}}_{\text{Pedestal}} + \underbrace{(\mathbf{ST'})_{13}}_{\text{peak in } \Delta\eta} \underbrace{(\mathbf{ST'})_{24}}_{\text{ex} \Delta \phi}$$

Chiu & Hwa, nucl-th/0505014

<u>Correlation without triggers</u>

Correlation function

$$C_2(1,2) = \rho_2(1,2) - \rho_1(1)\rho_1(2)$$

$$\rho_2(1,2) = \frac{dN_{\pi_1\pi_2}}{p_1dp_1p_2dp_2} \qquad \qquad \rho_1(1) = \frac{dN_{\pi_1}}{p_1dp_1}$$

Normalized correlation function

$$G_2(1,2) = \frac{C_2(1,2)}{\left[\rho_1(1)\rho_1(2)\right]^{1/2}}$$

Correlation of partons in jets

Two shower partons in a jet in vacuum

Fixed hard parton momentum k (as in e+e- annihilation)

$$\rho_1(1) = S_i^j(x_1)$$

 $r_2(1,2) = \frac{\rho_2(1,2)}{\rho_1(1)\rho_1(2)}$

$$\rho_{2}(1,2) = \left\{ S_{i}^{j}(x_{1}), S_{i}^{j'}(\frac{x_{2}}{1-x_{1}}) \right\} = \frac{1}{2} \left\{ S_{i}^{j}(x_{1}) S_{i}^{j'}(\frac{x_{2}}{1-x_{1}}) + S_{i}^{j}(\frac{x_{1}}{1-x_{2}}) S_{i}^{j'}(x_{2}) \right\}$$
$$x_{1} + x_{2} \leq 1$$

kinematically constrained dynamically uncorrelated 23

Shower partons with fixed k

Hwa & Tan, nucl-th/0503052

Correlation of pions in jets

Two-particle distribution

$$\frac{dN_{\pi\pi}}{p_{1}dp_{1}p_{2}dp_{2}} = \frac{1}{(p_{1}p_{2})^{2}} \int \left[\prod_{i} \frac{dq_{i}}{q_{i}}\right] F_{4}(q_{1},q_{2},q_{3},q_{4}) R(q_{1},q_{3},p_{1}) R(q_{2},q_{4},p_{2})$$

$$F_{4} = (\mathsf{TT} + \mathsf{ST} + \mathsf{SS})_{13}(\mathsf{TT} + \mathsf{ST} + \mathsf{SS})_{24}$$

$$\sum_{i} \int dkkf_{i}(k)$$

The shower partons are anti-correlated

Hwa and Tan, nucl-th/0503052

Hwa and Tan, nucl-th/0503052

Away-side $\Delta \phi$ distribution

PHENIX preliminary:

ZYAM subtracted pairs per trigger: 1/N^A dN^{AB}(di-jet)/d($\Delta \varphi$)

Simulation of parton rescattering

Random forward walker on a circular mount

Direction of walk is random within a Gaussian peak

Step size depends on local density

Most walks are absorbed inside the medium

no conical flow

Sample tracks

those that emerge

Chiu & Hwa (work in progress)

Autocorrelation

Correlation function $C_2(1,2) = \rho_2(1,2) - \rho_1(1)\rho_1(2)$ 1,2 on equal footing --- no triggerDefine $\theta_- = \theta_2 - \theta_1$ $\phi_- = \phi_2 - \phi_1$ Autocorrelation: $A(\theta_-, \phi_-)$ Fix θ_- and ϕ_- , and integrate over
all other variables in $C_2(1,2)$

The only non-trivial contribution to $A(\theta_{-},\phi_{-})$

near $\theta_{-} \sim 0$, $\phi_{-} \sim 0$ would come from jets

Chiu and Hwa (05)

Conclusion

- Hadronization by recombination resolves several puzzles at intermediate pT.
- The pedestal and peak structure in the <u>near-side</u> jets is due to enhanced thermal partons and to jet cone structure of shower partons.
- A <u>dip</u> is predicted in the <u>correlation function</u> due to anti-correlation among the shower partons.
- Promising start made in the $\Delta \phi$ distribution on the <u>away-side</u> by simulating parton rescattering and absorption.