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Puzzles at intermediate pT

1. Proton/pion ratio

2. Azimuthal anisotropy

3. Cronin effect in pion and proton production

4. Forward-backward asymmetry in dAu
collisions

5. Same-side associated particle distribution

QM04
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Correlations

1. Correlation in jets: distributions in Δη and Δφ

2.  Two-particle correlation without triggers

3.  Autocorrelations

4.  Away-side distribution (jet quenching)
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Puzzle #1        Rp/! > 1

Not possible in
fragmentation model:

Dp / q <<Dπ /q

Rp/!

Dp / q

Dπ / q

u
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inclusive distribution of pions in any direction

p
dNπ
dp

= dp1
p1

∫
dp2
p2

Fqq ( p1, p2 )Rπ (p1, p2 , p)

p1p2
p

δ (p1 + p2 − p)

   soft
component

thermal-shower
recombination

     usual fragmentation

(by means of recombination)

Proton formation:     uud   distribution

Fuud = TTT +TTS+ TSS+SSS

 
p

In the recombination model

Fqq =TT +TS+SS
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π production in AuAu central collision at 200 GeV

Hwa & CB Yang, PRC70, 024905 (2004)

  TS

fragmentation

thermal
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All in recombination/
coalescence model

compilation by R.Seto (UCR)
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Molnar and Voloshin, PRL 91, 092301 (2003).

Parton coalescence   implies that v2(pT) 
scales with the number of constituents

STAR data

Puzzle #2  Azimuthal anisotropy
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Puzzle #3       in pA or dA collisions

kT broadening by multiple
scattering in the initial state.

Unchallenged for ~30 years.

If the medium effect is before fragmentation,
then α should be independent of h= π or p

Cronin Effect Cronin et al, Phys.Rev.D (1975)

p

q

h
dN
dpT

(pA→πX )∝ Aα , α > 1

A

RCP
p > RCP

π STAR, PHENIX (2003)

Cronin et al, Phys.Rev.D (1975)αp > απ
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RCP for d-Au collisions

RCP
p > RCP

π because 3q → p,  2q → π
more partons at 1/3 than at 1/2

Argument does not extend to              ,5q→Θ 6q→ d
nor to higher pT because of ST and SS recombination.

Hwa & CB Yang,
PRL 93, 082302 (04).
PRC 70, 037901 (04).
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Puzzle #4    Forward-backward asymmetry in
d+Au collisions

Expects more
forward particles at
high pT than
backward particles

If initial transverse broadening of parton
gives more hadrons at high pT, then

• backward has no
broadening

• forward has more
transverse broadening

B/F < 1
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Backward-forward ratio at intermed. pT

in d+Au collisions (STAR)
B/

F



14

Hwa, Yang, Fries, PRC 71, 024902 (2005)

Forward production in d+Au collisions

Underlying physics for hadron production is not
changed from backward to forward rapidity.

BRAHMS
data
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STAR : nucl-ex/0501016
Trigger  4 < pT < 6 GeV/c

Puzzle #5: Associated particle pT distribution (near side)

factor of 3
difficult for medium modification of
fragmentation function to achieve

Hwa & Tan, nucl-th/0503060

Recombination model

because of T-S recombination
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PHENIX (preliminary) dAu(0 − 20%)
pp

STAR (preliminary)

N. Grau

1
100%)yield(40
20%)yield(0

≈
−
−

J. Bielcikova

RIKEN/BNL
Workshop 3/05
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Correlations
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Δφ and Δη distributions

P1

P2

Pedestal
Why?

Are these peaks related? How?
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For STST recombination

enhanced thermal trigger associated particle

with background subtracted

Pedestal peak in Δη
& Δφ

  F4
tr−bg = ∑ ∫(ST')13(T'T' − TT)24 + (ST')13(ST')24

  
F4
' = ξ dkkf i∫

i
∑ (k)T' (q3){S(q1),S(q2 )}T'(q4 )e

−ψ 2 / 2σ 2 (q2 / k ) |ψ =2 tan−1 g(η ,η 1)



20Chiu & Hwa, nucl-th/0505014

pedestal
ΔT=15 MeV
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Chiu & Hwa, nucl-th/0505014
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Correlation without triggers

Correlation function

C2(1,2) = ρ2 (1,2) − ρ1(1)ρ1(2)

ρ2 (1,2) =
dNπ1π2

p1dp1p2dp2
ρ1(1) =

dNπ 1

p1dp1

Normalized correlation function

G2 (1,2) =
C2 (1,2)

ρ1(1)ρ1(2)[ ]1/ 2
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Correlation of partons in jets

Two shower partons in a jet in vacuum

Fixed hard parton momentum k
(as in e+e- annihilation)

k

x1

x2

ρ1(1) = Si
j(x1)

ρ2 (1,2) = Si
j(x1), Si

j' ( x2
1− x1

)
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

=
1
2
Si
j(x1)Si

j' ( x2
1− x1

) + Si
j ( x1
1 − x2

)Si
j' (x2 )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

r2(1,2) =
ρ2 (1,2)

ρ1(1)ρ1(2)

x1 + x2 ≤ 1

kinematically constrained
dynamically uncorrelated
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no correlation

Hwa & Tan, nucl-th/0503052

C2 (1,2) = [r2 (1,2) −1]ρ1(1)ρ1(2)

< 0
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Correlation of pions in jets

Two-particle distribution
dNππ

p1dp1p2dp2
=

1
( p1p2 )

2
dqi
qii

∏⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ ∫ F4 (q1,q2,q3, q4)R(q1,q3, p1)R(q2 ,q4, p2 )

  F4 = (TT+ST +SS)13(TT+ST+SS)24
k

q3

q1

q4

q2

The shower partons are anti-correlated

dkkfi (k)∫
i
∑
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C2(1,2) = ρ2 (1,2) − ρ1(1)ρ1(2) ρ2 (1,2) =
dNπ1π2

p1dp1p2dp2
ρ1(1) =

dNπ 1

p1dp1

Hwa and Tan, nucl-th/0503052
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G2 (1,2) =
C2 (1,2)

ρ1(1)ρ1(2)[ ]1/ 2



28Hwa and Tan, nucl-th/0503052

RCP
G2 (1,2) = G2(0−10%)(1,2)

G2
(80−92%)(1,2)
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Away-side Δφ distribution
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Most walks are absorbed
inside the medium

Step size depends
on local density

Random forward walker
on a circular mount

Direction of walk is
random within a
Gaussian peak

no conical flow

Simulation of parton rescattering
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Sample tracks

those that emerge those that are absorbed

away-side
distribution

Chiu & Hwa
(work in progress)
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Autocorrelation

Correlation function C2 (1,2) = ρ2 (1,2) − ρ1(1)ρ1(2)

1,2 on equal footing --- no trigger

Define θ− = θ2 −θ1 φ− = φ2 −φ1

Autocorrelation:

Fix      and       , and integrate over 
all other variables in

θ− φ−

C2 (1,2)

The only non-trivial contribution to

near          ,             would come from jets θ−  0  φ−  0

A(θ− ,φ− )

A(θ− ,φ− )
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p2

p1

x

y z

χ

θ1
θ2

  pion momentum
space

q2
q1

x

y
z

χ
ψ2

ψ1
k

parton momentum
space

A(η− ,φ− )

φ-

H (θ1,θ2 ,φ− )
P(χ)

G(ψ 1,ψ 2 )
Gaussian in
jet cone



34Chiu and Hwa (05)
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Conclusion

  Hadronization by recombination resolves several 
puzzles at intermediate pT.

  The pedestal and peak structure in the near-side
jets is due to enhanced thermal partons and to
jet cone structure of shower partons.

  A dip is predicted in the correlation function due
to anti-correlation among the shower partons.

  Promising start made in the Δφ distribution on the
away-side by simulating parton rescattering 
and absorption.


