Quark Matter 2005, Budapest, Hungary

Tim.Schuster@cern.ch

Andras.Laszlo@cern.ch

² Institute for Nuclear Physics, J. W. Goethe University, Frankfurt am Main, Germany ¹ MTA-KFKI Research Institute of Particle and Nuclear Physics, Budapest, Hungary

András László¹, Tim Schuster² and the Collaboration

Pb+Pb Collisions at 158 GeV/nucleon Beam Energy

High p_T Spectra of Identified Particles Produced in

- Physics motivation: energy dependence.
- Data sets, centrality selection.
- Charged hadron analysis.
- ${\ensuremath{\,\overline{}_{\hspace{-.1em}s}}}\ K^0_s$ and Λ identification.
- Hadron yield ratios.
- $\Im K_{CP}$ for identified charged hadrons.
- Summary.

What is the energy deper	PHENX proton/π ratio 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 12 <t< th=""><th>Physics motivation: e</th></t<>	Physics motivation: e
ndence of these effects?	$R_{c_{1}}^{e_{1}} (i_{1}^{e_{1}} ($	nergy dependence

Pb+Pb @ $158 \,\mathrm{GeV/nucleon}$ beam energy, CERN-NA49.

minimum-bias (406k) Data sets from 1996: 10% most central (930k)

24% most central (3M) minimum-bias (340k)

Data sets from 2000:

Data sets, centrality selection

Charged particle analysis: in (0-5)%, (12.5-23.5)%, (33.5-80)% centrality bins.

Quark Matter 2005

Preliminary high p_T results

Corrected for:

- geometrical acceptance,
- tracking effi ciency.

Not corrected for:

- $<\!\!\!\! < \!\!\! < \!\!\! \sim \quad K^\pm$ and π^\pm decay,
- feeddown.

ightarrow systematic biases $\leq 10\%$

Comparison with published spectra at low and medium p_T :

A. Afanasiev et al (the NA49 collaboration): Phys. Rev., C66, 054902, 2002

T. Anticic et al (the NA49 collaboration): Phys. Rev., C69, 024902, 2004

Quark Matter 2005

Q

Charged hadron analysis

Preliminary spectra (symbols) vs published spectra (solid lines).

Quark Matter 2005

K^0_s and Λ analysis

Neutral strange particles: identifi cation via decay topology.

(Reconstruction of decay vertex, and invariant mass calculation.)

Rapidity domain: [-0.5, 0.5].

Centrality: (0-23.5)%.

Monotonic increase with p_T and centrality at high p_T .

10

Quark Matter 2005

Quark Matter 2005

Energy dependence of baryon/meson ratios.

Approxymately energy independent shape.

fi tted simultaneously at low p_T . At high p_T : does not describe data. Solid curve: Blast-Wave (BW) paramerization of the combined data on m_T spectra and HBT,

BW: F. Retiere, M. A. Lisa: Phys. Rev., C70, 044907, 2004.

Quark Matter 2005

Budapest, Hungary

<u></u>ω

fi tted simultaneously at low p_T . At high p_T : does not describe data. Solid curve: Blast-Wave (BW) paramerization of the combined data on m_T spectra and HBT,

BW: F. Retiere, M. A. Lisa: Phys. Rev., C70, 044907, 2004.

4

Quark Matter 2005

Nuclear modifi cation factor (K_{CP}).

Defined by:

$$R_{CP} := \frac{N(\text{Peripheral})}{N(\text{Central})} \cdot \frac{\text{Yield}(\text{Central})}{\text{Yield}(\text{Peripheral})}$$

collisions, or the calculated value of the number of wounded Here N can be either the calculated value of the number of binary

nucleons, in the given centrality range.

 R_{CP} for identifi ed particles

Budapest, Hungary

Seems to describe the experimental R_{CP} curves well.

Quark Matter 2005

Dashed line: pQCD calculation. X.-N. Wang: Phys. Lett., B595, 165-170, 2004.

 R_{CP} for identifi ed particles

 R_{CP} for identifi ed particles

4.5 baryon/meson ratio below approach the experimental The pQCD prediction does not

4 GeV/c transverse momentum.

Budapest, Hungary

<u>∞</u>

Summary

- G The p_T shape of baryon/meson ratio is approximately energy independent.
- G The blast-wave model seems not to describe baryon/meson ratios at high p_{T} .
- scaling.
- G Strong energy dependence at high p_T , both with binary collisions and wounded nucleon scaling.
- Q The R_{CP} factors, using wounded nucleon scaling, show no remarkable energy dependence at low p_T . This was also pointed out in Phys. Rev. Lett., 94, 082304, 2005 by PHOBOS collaboration, for unidentifi ed particles
- G The pQCD model do describe the R_{CP} -s correctly, however the baryon/meson prediction is far from experiment below $4 {
 m GeV}/{
 m c}$ transverse momentum

Backup slides

 N_W (wounded nucleons), N_C (number of collisions) calculated by <code>VENUS</code> Centrality bins defined by: % of total inelastic cross section (7.15mb). empiric Veto Calorimeter energy distribution.

Quark Matter 2005

20

Backup slides

21