

Strange and Charged Particle Elliptic Flow in Pb+Au Collisions at 158 GeV

Jovan Milošević for the CERES/NA45 Collaboration

Physikalisches Institut, Universität Heidelberg, Germany

- Motivation for studying flow
- CERES/NA45 experimental setup and data used
- A elliptic flow
- Method of A reconstruction
- Method of reaction plane determination and Λ elliptic flow measurement
- Results: Λ elliptic flow vs p_T and centrality
- Comparison with NA49 results, STAR results and hydrodynamical calculations
- π^{\pm} elliptic flow
- ullet π^\pm elliptic flow vs η, y, p_T and centrality
- Comparison between Λ and π elliptic flow
- Scaling to the number of constituent quarks and y_T^{fs} variable
- Conclusions

- $dN/d(\phi \Psi)$ is not isotropic in non-central collisions. This phenomenon we called flow
- Flow is sensitive to the Equation of State
- Elliptic flow of Λ is important because Λ is a baryon and has one constituent
 - $_s$ quark. Comparing scaled flows one concludes about flow of quarks.

Cuts applied to reduce the background; Λ signal

- Reconstructed $\Lambda \rightarrow p + \pi^-$ (BR = 63.9%,
- $c\tau = 7.89$ cm) using TPC tracks which satisfy:
- TPC dE/dx cut ($\pm 1.5\sigma$ for π^{\pm} , 1σ for p)
- Number of hits per track, depending on θ, is between 8 and 12 hits per track
- $2.05 \le \eta \le 2.70$, $p_T \ge 0.05$ GeV/c
- TPC candidate tracks for A daugthers should not match SDD tracks within 3σ due to late decay
- Armenteros-Podolanski cut:

 $q_T \leq 0.125$ and $0 \leq \alpha \leq 0.65$

- Pairs of candidates should survive *p_T* dependent opening angle cuts
- Background is calculated by rotating positive track by a random angle

With these cuts optimal values for $\frac{S}{B} \approx 0.04$ and $\frac{S}{\sqrt{B}} \approx 500$ were obtained

Characteristics of Λ signal

- A signal is fitted with a Gaussian + a constant
- Flow analysis is done separately in each small y and p_T bin where mean and width of Gaussian are constant; results ($dN_{\Lambda}/d(\phi-\Phi)$) are merged
- Distribution of accepted As

ശ

method
plane
reaction
<mark>by</mark>
lysis
anal
flow

Azimuthal distributions of particles with respect to the true reaction plane orientation (Ψ)

$$E\frac{d^3N}{d^3p} = \frac{d^2N}{p_T dp_T dy} \frac{1}{2\pi} \{1 + 2v_2 \cos[2(\phi - \Psi)]\}$$
(1)

Reaction plane orientation (Φ) is measured from the second Fourier harmonic

$$\Phi = \frac{1}{2} \arctan\left(\frac{Y_2}{X_2}\right) \equiv \frac{1}{2} \arctan\left(\frac{\sum_i \sin(2\phi_i)}{\sum_i \cos(2\phi_i)}\right) \tag{2}$$

- We avoid autocorrelations using particles which are not candidates for Λ daughters, i.e. we used primary vertex tracks for the reaction plane determination
- Flattening of the reaction plane was done by recentering and Fourier Expansion of $dN/d\Phi$
- Finite resolution of the measured reaction plane. Observed Fourier coefficient v_2' has to be corrected for the resolution:

$$v_2 = v'_2 / \sqrt{2} \langle \cos[2(\Phi_a - \Phi_b)] \rangle$$

- For an ideal detector $dN/d\Phi$ is flat
- geometrical offset between position of the beam and the center of the In reality, different detector effects {efficiency in ϕ smaller then 100%, detector in the x - y plane} make it nonflat
- Example of flattening of the calculated reaction plane (Φ) in one centrality bin:

For consistency, reaction planes from all 4 harmonics were checked

ω

- In each $y p_T$ bin we reconstructed Λ in 6 $(\phi \Phi)$ bins
- Uncorrected elliptic flow values v_{2}^{\prime} were obtained by fitting $dN_{\Lambda}/d(\phi-\Phi)$ distributions with $A(1 + 2v'_2 \cos[2(\phi - \Phi)])$ flow function

ი

Centrality determination

- 3 triggers contribute with 0.54%, 8.25% and 91.21%
- Flow analysis is done in 2 centrality bins with weighted mean centrality of 3.5% and 10.5%

- Correction factors vs TPC multiplicity
- A systematic error due to uncertainty in the determination of the reaction plane was estimated to $\Delta v = 0.11\%$ from the difference between the resolutions obtained from correlations of 2 subevents in ϕ and η

Milošević (University Heidelberg) As expected, they are growing with TPC multiplicity due to decreasing flow Quark Matter 2005, Budapest, Aug 5th, 2005

- v_2 grows with p_T in noncentral collisions
- A clear difference in the flow intensity between central and semicentral events
- Estimated absolute systematic error Δv is $^{+0.1\%}_{-0.7\%}$ for $p_T < 1.6$ GeV/c and -2% for $p_T>1.6$ GeV/c

- 160 MeV is very close to CERES data, while $T_f=120$ MeV overpredicts data Hydrodynamical calculation with higher freeze-out temperature: $T_f =$
- The same is observed comparing pion flow from CERES to hydrodynamical model
- Sensitivity to the EOS

Hydrodynamical calculation (1-st order phase transition, $T_c=165~{
m MeV}$) by: P. Huovinen

- RHIC data shows bigger Λ elliptic flow than CERES data. Partially, it is due to effectively higher centrality used in CERES with respect to the STAR experiment.
- Very good agreement for Λ flow intensity between NA49 and CERES data

STAR results: Phys. Rev. Lett. 92(2004)052302 (nucl-ex/0306007)

- Correction factors vs centrality
- Correction factors are big due to small multiplicity in each of 4 slices

Dependence of π^\pm elliptic flow on $\eta,\,y$ and p_T

- v_2 is rather flat in η and y, and near y_{cm} it has intensity of pprox 1.5%
- $lacksim v_2$ grows with p_T and approaches pprox 4% at high p_T

 π elliptic flow decreases with centrality from 2.3% in semicentral to 1.1% in very central collisions

- At small p_T , $v_2(\pi) > v_2(\Lambda)$, while it is opposite in case of high p_T
- Comparison of v_2 scaled to the number of constituent quarks between Λ and π shows the same behaviour as it is observed at RHIC

STAR results: Phys. Rev. Lett. 92(2004)052302 (nucl-ex/0306007)

 v_T^{fs} scaling of v_2 of Λ and π shows the same behaviour as it is in the case of scaling to the number of constituent quarks ($y_T^{fs} = k_m y_T^2 m$)

Quark Matter 2005, Budapest, Aug 5th, 2005

J. Milošević (University Heidelberg)

- A elliptic flow
- v_2 increases with p_T
- v_2 decreases with centrality
- **CERES data are compared with RHIC and NA49 data**
- Hydro-calculation with higher freeze-out temperature: $T_f = 160$ MeV is very close to CERES data, while $T_f=120$ MeV overpredicts data
- The same is observed comparing pion flow from CERES to hydrodynamical model
- π elliptic flow
- ullet v_2 approaches pprox 1.5% near y_{cm}
- v_2 grows with p_T and approaches pprox 4% at high p_T
- π elliptic flow decreases with centrality
- Comparison of v_2 scaled to the number of constituent quarks between Λ and π shows the same behaviour as it is observed at RHIC
 - There is no evidence for $y_{\mathcal{T}}^{fs}$ scaling between Λ and π^{\pm} elliptic flow

P. Rehak BNL, Upton, USA L. Musa, J. Schukraft CERN, Geneva, Switzerland

A. Drees

SUNY Stony Brook, USA

G. Agakichiev, D. Antonczyk, A. Andronic, P. Braun-Munzinger, O. Busch, C. Garabatos,

G. Hering, J. Holeczek, A. Maas, A. Marín,

D. Miśkowiec, S. Radomski, J. Rak, H. Sako,

S. Sedykh, G. Tsiledakis GSI, Darmstadt, Germany

H. Appelshäuser IKF, Frankfurt, Germany V. Belaga, K. Fomenko, Y. Panebrattsev,

O. Petchenova, S. Shimansky, V. Yurevich JINR, Dubna, Russia

J. P. Wurm MPI, Heidelberg, Germany D. Adamová, V. Kushpil, M. Šumbera NPI/ASCR, Řež, Czech Republic J. Bielčíková, R. Campagnolo, S. Damjanović,
T. Dietel, L. Dietrich, S. I. Esumi, K. Filimonov,
P. Glässel, G. Krobath, W. Ludolphs, J. Milošević,
R. Ortega, V. Petráček, W. Schmitz, W. Seipp,
J. Stachel, H. Tilsner, T. Wienold, B. Windelband,

S. Yurevich University Heidelberg, Germany

J. P. Wessels University Münster, Germany A. Cherlin, Z. Fraenkel, I. Ravinovich, I. Tserruya Weizmann Institute, Rehovot, Israel

Thanks to P. Huovinen

for hydrodynamics calculations

- Protons: positive particles with $dE/dx \leq 1.1 \ dE/dx(p, |\vec{p}|)$ ($\doteq + 1\sigma$) using **Bethe-Bloch equation**
- $0.85 \ dE/dx(\pi^{-}, |\vec{p}|) \leq dE/dx \leq 1.15 \ dE/dx(\pi^{-}, |\vec{p}|) (= \pm 1.5\sigma)$ π^- : negative particles with

- Λ signal is fitted with a Gaussian + a constant
- displaced secondary decay vertex is not used for recalculation of the angles Mean values and width of the Gaussian depend on y and p_T because the
- Secondary vertex depends on p_T
- Flow analysis is done separately in each small y and p_T bin where mean and width of Gaussian are constant; results ($dN_{\Lambda}/d(\phi-\Phi)$) are merged

- Elliptic flow values were corrected for the reaction plane resolution
- v_2 slowly grows with y due to Λ acceptance in p_T
- v_2 increases with p_T and approaches pprox 6% at 3 GeV/c

- v_2 slowly grows with y due to Λ acceptance in p_T
- A clear difference in the flow intensity between central and semicentral events

Very good agreement for Λ flow intensity between NA49 and CERES data

28

Reaction plane orientation (Φ) is measured from the second Fourier harmonic v2

$$b_2 = \frac{1}{2}\arctan\left(\frac{Y_2}{X_2}\right) \equiv \frac{1}{2}\arctan\left(\frac{\sum_i \sin(n\phi_i)}{\sum_i \cos(n\phi_i)}\right)$$
(3)

- Reaction plane is reconstructed from 2 subevents formed from positive and negative pions
- We avoid autocorrelations by correlating given particle to the reaction plane reconstructed from another subevent
- Flattening of the reaction plane was done by recentering and Fourier Expansion of $dN/d\Phi$
- Finite resolution of the measured reaction plane. Observed Fourier coefficient v'_2 has to be corrected for the resolution:

$$v_2 = v_2'/\sqrt{2\langle\cos[2(\Phi_a - \Phi_b)]}$$

18.5 M events is used statistics

 $\pi^{\pm} \colon 0.85 \ \frac{dE}{dx} (\pi^{\pm}, |\vec{p}|) \le \frac{dE}{dx} \le 1.15 \ \frac{dE}{dx} (\pi^{\pm}, |\vec{p}|) (\hat{=} \pm 1.5\sigma)$

- A elliptic flow
- To include small p_T identified protons in order to get one more small p_T point in $v_2(\Lambda)$
- The matrix of the matr
- More statistics (28M events)
- Systematic error of v₂ using Slice method
- Correction for possible HBT effects
- Directed flow
- \bullet K^0_S elliptic flow
- Elliptic flow of identified protons and deuterons
- Reexamination of the *Cumulants* and *Lee-Yang zero* method on the **CERES** data

Correction factors vs centrality

Due to roughly double multiplicity, correction factors in 2 subevent method are $pprox \sqrt{2}$ times smaller then in case of slice method