

3-D Hydro + Cascade Model at RHIC

Duke University

Chiho NONAKA and Steffen A. BASS

Contents

Introduction

•3-D Hydrodynamic Model

Results (single particle spectra, elliptic flow)

•3-D Hydro + Cascade Model

Results (single particle spectra, elliptic flow)

•Comparison between pure hydro and hydro + UrQMD

•Summary

Introduction

Success of Ideal Hydrodynamic Models at RHIC

However...

Chiho NONAKA

Freezeout process in Hydro

1. Single freezeout temperature?

Difference between chemical and thermal freezeout

Possible solutions:

- Partial chemical equilibrium Hirano, Kolb, Rapp
- Hydro + Micro Model
 Bass, Dumitru, Teaney, Shuryak
 Chiho NONAKA

2. In UrQMD final state interactions are included correctly.

Step1. 3-D Hydro

3-D Hydrodynamic Model

- Hydrodynamic equation $\partial_{\mu}T^{\mu\nu} = 0$ $T^{\mu\nu}$: energy momentum tensor - Baryon number conservation freeze-out $\partial_{\mu}(n_B(T,\mu)) = 0$ Hvdrodvnamica Coordinates expansio $(\tau, x, y, \eta) : \tau = \sqrt{t^2 - z^2}, \eta = \tanh^{-1}\left(\frac{z}{t}\right)$ thermalization Lagrangian hydrodynamics z - Tracing the adiabatic path of each volume element Effects of phase transition on observables nucleus nucleus Algorithm
 - Focusing on the conservation law

$$\partial_{\mu}(s(T,\mu)u^{\mu})=0, \ \partial_{\mu}(n_B(T,\mu)u^{\mu})=0$$

Parameters

- Initial Conditions
 - Energy density
 - $\varepsilon(x, y, \eta) = \varepsilon_{\max} W(x, y; b) H(\eta)$
 - Baryon number density $n_B(x, y, \eta) = n_{Bmax}W(x, y; b)H(\eta)$
 - Parameters (pure hydro)
 - $\begin{cases} \tau_0 = 0.6 \text{ fm/c} \\ \varepsilon_{\text{max}} = 43 \text{ GeV/fm}^3, n_{\text{Bmax}} = 0.15 \text{ fm}^{-3} \end{cases}$

$$\eta_0$$
=0.5 σ_η =1.5

Different from hydo + UrQMD !

- Flow

```
v_{\rm L}=\eta (Bjorken's solution); v_{\rm T}=0
```

- Equation of State
 - 1st order phase transition
 Bag Model + Exclude volume model
- Freezeout Temperature
 T_f=110 [MeV]

Impact parameter dependence of rapidity distribution

Impact parameter dependence of P_T spectra

Au+Au, sqrt(s)=200 GeV

•b=4.5 fm: consistent with experimental data
•b=6.3 fm: proton → overestimate

Step2. 3-D Hydro + UrQMD

3D-Hydro + UrQMD Model

Bass and Dumitru, PRC61,064909(2000) Teaney et al, nucl-th/0110037

- Freezeout process:
 - Chemical freezeout & thermal freezeout
- →3D-Hydro +UrQMD
 - Treatment of freeze-out is determined by mean free path.
 - Brake up thermalization: viscosity effect

Parameters

- Initial Conditions
 - Energy density
 - $\varepsilon(x, y, \eta) = \varepsilon_{\max} W(x, y; b) H(\eta)$
 - Baryon number density $n_B(x, y, \eta) = n_{Bmax}W(x, y; b)H(\eta)$
 - Parameters (pure hydro)

 $\begin{cases} \tau_0 = 0.6 \text{ fm/c} \\ \varepsilon_{\text{max}} = 35 \text{ GeV/fm}^3, n_{\text{Bmax}} = 0.15 \text{ fm}^{-3} \end{cases}$

 η_0 =0.5 σ_η =1.5

– Flow

 $v_{\rm L} = \eta$ (Bjorken's solution); $v_{\rm T} = 0$

Switching temperature

*T*_f=150 [MeV]

Different from Pure Hydro !

	hydro	Hydro+
		UrQMD
$ au_0({ m fm})$	0.6	0.6
$\varepsilon_{\rm max}$ (GeV/fm ³)	43	35
n _{Bmax} (fm ⁻³)	0.15	0.15
η ₀ ,σ _η	0.5, 1.5	0.5, 1.5

P_T spectra at central collisions

Impact parameter dependence of rapidity distributions

Impact parameter dependence of P_T

Reaction Dynamics in UrQMD I

Hadron Interactions

Pion wind

- π decrease
- K,p increase
- protons earn large P_T

Reaction Dynamics in UrQMD II

<P_T> vs mass

Summary

- 3-D Hydrodynamic Model
 - Single particle distribution
 - Centrality dependence
 - Elliptic flow
 - Low T_f : \checkmark single spectra, elliptic flow, \thickapprox hadron ratios
 - →Necessity of improvement of freezeout process in Hydro
- 3-D Hydro + UrQMD
 - Single particle distribution
 - Centrality dependence
 - Different initial conditions from pure Hydro

 - Reaction dynamics in UrQMD
- Work in progress
 - Elliptic Flow by Hydro + UrQMD
 - EoS dependence: ex. lattice QCD
 - Initial conditions: parametrization?
 - Switching temperature
 - HBT ?

Chiho NONAKA

[1]Huovinen et.al., PLB(130) [2]Kolb et.al. PRC, [3]Hirano et.al.PRC(130), [4]Teaney et al. Chiho NONAKA QM2005

Trajectories on the Phase Diagram

Lagrangian hydrodynamics

Hadron Interactions

Hydro vs Hydro+ UrQMD

Hadron Interaction reduces elliptic flow

 Switching temperature T_{sw}=150 MeV