

Quark Matter 2005

18th International Conference on Nucleus-Nucleus Collisions August 4-9, Budapest, Hungary

Strangeness trapping

Jørgen Randrup, Volker Koch, and Abhijit Majumder

Lawrence Berkeley National Laboratory

Phase diagram of strongly interacting matter

Expectations from lattice gauge calculations:

First-order phase transitions

Ph. Chomaz, M. Colonna, J. Randrup Physics Reports 389 (2004) 263

occurs!

Spinodal decomposition in nuclear multifragmentation

Experiment (INDRA @ GANIL)

Theory ($BOB \approx BL$)

Spinodal decomposition in strongly interacting matter

1) Spinodal decomposition in dilute nuclear matter \checkmark

Nuclear liquid-gas phase transition

Hadronization phase transition

Kinematical correlations: J Heavy Ion Physics 22 (2005) 69

Chemical correlations: Strangeness trapping

Strangeness trapping

The expanding system decomposes into plasma blobs that each contain a certain amount of strangeness:

Use μ_B as the independent variable:

 $\bar{Q} = 0.4\bar{B}$, $\bar{S} = 0 \longrightarrow \mu_{\rm Q}$, $\mu_{\rm S}$

Particle production in heavy ion collisions, P. Braun-Munzinger, K. Redlich, J. Stachel, in *QGP* 3 (Hwa & Wang); nucl-th/0304013

Spinodal model: Plasma blobs form, expand & hadronize

The plasma blob contains strange quarks and antiquarks:

$$\langle \nu \rangle = \langle \bar{\nu} \rangle \approx \zeta_{s} = \frac{3}{\pi^{2}} V_{q} T_{q}^{3} \left(\frac{m_{s}}{T_{q}}\right)^{2} K_{2} \left(\frac{m_{s}}{T_{q}}\right)$$
Its total strangeness, $S_{0} = \nu_{\bar{s}} - \nu_{s}$, is conserved.
$$\left(\begin{array}{c}B_{s} = +\frac{1}{3}\\Q_{s} = -\frac{1}{3}\end{array}\right) \approx \left(\begin{array}{c}B_{s} \rangle_{s} = \bar{B} - \frac{1}{3}S_{0}\\Q_{s} \rangle_{s} = \bar{Q} + \frac{1}{3}S_{0}\end{array}\right) \approx \left(\begin{array}{c}\mu_{B}^{\prime}\\\mu_{Q}^{\prime}\end{array}\right)$$
... expands ...
$$\left(\begin{array}{c}B_{s} = +\frac{1}{3}\\Q_{s} = -\frac{1}{3}\end{array}\right) \approx \left(\begin{array}{c}B_{s} \rangle_{s} = \bar{B} - \frac{1}{3}S_{0}\\Q_{s} \rangle_{s} = \bar{Q} + \frac{1}{3}S_{0}\end{array}\right) \approx \left(\begin{array}{c}\mu_{B}^{\prime}\\\mu_{Q}^{\prime}\end{array}\right)$$
... and hadronizes (at fixed S_{0}):
$$\begin{array}{c}\text{Freeze-out volume: } V_{h} = \chi V_{q}\\Preeze-out temperature: T_{h}\\Q_{s} = \frac{g_{k}}{2\pi^{2}}V_{h}T_{h}^{3}\left(\frac{m_{k}}{T_{h}}\right)^{2}K_{2}\left(\frac{m_{k}}{T_{h}}\right)e^{(\mu_{B}^{\prime}B_{k}+\mu_{Q}^{\prime}Q_{k})/T_{h}}\\Z_{S_{0}} = \prod_{k}\left[\sum_{n_{k}\geq 0}\frac{\zeta_{k}^{n_{k}}}{n_{k}!}\right]\delta\left(\sum_{k}S_{k}n_{k} - S_{0}\right)$$

$$\begin{array}{c}\text{Canonical}\\partition\\function\end{array}$$

Quark Mattter 2005

<

Schematic scenario: charged kaons only

$$\zeta_{K} = \frac{g_{K}}{2\pi^{2}} V_{h} T_{h}^{3} \left(\frac{m_{K}}{T_{h}}\right)^{2} K_{2}\left(\frac{m_{K}}{T_{h}}\right) \qquad = > \quad \langle n_{K^{\pm}} \rangle_{S_{0}} = \zeta_{K} \pm \frac{1}{2} S_{0} - \frac{1}{4} + \frac{4S_{0}^{2} - 1}{32\zeta_{K}} + \mathcal{O}\left(\frac{1}{\zeta_{K}^{2}}\right)$$

Average over distribution of S_0: $\prec S_0 \succ = 0$ & $\sigma_{S_0}^2 = 2\zeta_s$

$$\begin{array}{c|c} \underline{\text{Ensemble average multiplicities:}} & \underline{\text{Multiplicity (co)variances:}} \\ \hline \prec n_{K^{\pm}} \succ = \zeta_{K} - \frac{1}{4} + \frac{8\zeta_{s} - 1}{32\zeta_{K}} + \mathcal{O}(\frac{1}{\zeta_{K}^{2}}) \\ \hline & \sigma_{K^{\pm}}^{2} = \frac{1}{2}\zeta_{K} + \frac{1}{2}\zeta_{s} + \mathcal{O}(\frac{1}{\zeta_{K}}) \\ \hline & \sigma_{K^{\pm}K^{-}}^{2} = \frac{1}{2}\zeta_{K} - \frac{1}{2}\zeta_{s} + \mathcal{O}(\frac{1}{\zeta_{K}}) \\ \hline & \sigma_{K^{\pm}K^{-}}^{2} = \frac{1}{2}\zeta_{K} - \frac{1}{2}\zeta_{s} + \mathcal{O}(\frac{1}{\zeta_{K}}) \\ \hline & = > \sigma^{2}(n_{K^{\pm}} - n_{K^{\pm}}) = 2\zeta_{s} = \sigma_{S_{0}}^{2} \\ \hline & \zeta_{K} < \zeta_{s} = (1 + \Delta)\zeta_{K} : \\ \hline & \sigma_{K^{\pm}K^{-}}^{2} \approx \zeta_{K} + \frac{1}{2}\Delta\zeta_{K} \\ \hline & \sigma_{K^{\pm}K^{-}}^{2} \approx -\frac{1}{2}\Delta\zeta_{K} \end{array}$$

Kaon multiplicity distribution

- 1) Grand-canonical equilibrium in the hadron blob ($V_h = 150 \text{ fm}^3$): $\langle S_0 \rangle = 0$
- 2) Canonical equilibrium in V_h demanding *zero* net strangeness: $S_0 = 0$
- 3) Canonical equilibrium in V_h with S_0 selected in the plasma ($V_a = 50 \text{ fm}^3$)

Distribution of the K-to- π ratio

Variance in (N_K/N_π) × Normalized by the average N_π

Dependence on the expansion factor χ

Strangeness trapping during hadronization?

If the hadronization phase transition is of first order and *if* the bulk matter enters the region of phase coexistence *then spinodal decomposition may* occur.

Spatial irregularities will then be amplified and a characteristic spinodal *clumping may* develop, *prior* to the conversion of the plasma into hadrons.

This mechanism *may* produce observable signals:

1) Collective motion => *N*-baryon kinematic correlations

2) Strangeness trapping => enhanced K/ π fluctuations

Each blob conserves its strangeness through expansion and hadronization

Has this effect already been seen by NA49 @ CERN? Can this effect be utilized by CBM @ FAIR?