

Soft Physics from STAR Bulk properties

For the STAR Collaboration

The STAR Detector

Large acceptance: 2π coverage at mid-rapidity

the Quark-Gluon Plasma

The goal: To create and study QGP – a state of deconfined, thermalized quarks and gluons over a large volume predicted by QCD at high energy density.

QGP is a bulk, soft physics phenomenon.

Questions:

- energy density?
- degree of thermalization?
- deconfinement, DOF, EOS?

<u>Tools</u>:

- jets & interactions with bulk
- elliptic & radial flow
- hadron distributions

Courtesy of S. Bass

FAR

08/07/05

soft-soft correlations

hard-soft interactions

hard-soft angular correlations

Soft Physics from STAR

correlation functions

08/07/05

Soft Physics from STAR

conical flow? 3-particle correlation

FAR

STAR

elliptic flow v₂

- Non-flow effects large at high p_T and for lighter systems.
- multiple methods to remove non-flow: 4-particle cumulants, subtraction of pp.
- Significantly smaller v_2 in Cu+Cu than in Au+Au.

Molnar, Voloshin, Ko, Fries, Hwa, et al.

No significant difference in angular correlations.

More work for coalescence approach.

Soft Physics from STAR

time and size

resonance decays and regeneration: measure kinetic freezeout – life time. HBT: measures freeze-out source sizes (marked by collective flow).

strange baryon spectra

kinetic freeze-out

particle spectra kinetic freezeout properties, total collective radial flow.

event-by-event fluctuations

Phase transition large event-by-event fluctuations

Smooth \sqrt{s} dependence, no threshold effect.

Original QGP signal in inclusive net charge fluctuation is excluded. More differential studies are needed.

FAR

forward physics

See talk, B. Mohanty (section 1b)

Consistent with the CGC framework.

 $R_{dAu}\text{-}\pi^0$ lower than h⁻: p+p h⁻ is isospin suppressed at large

Photons: centrality independent limiting fragmentation. Charged particles: centrality dependent limiting fragmentation.

Pions follow limiting fragmentation in heavy-ion collisions.

η.

- New, precision data from STAR.
- Jet-medium interaction:
 - strong indication of thermalization processes
 - distinctive features of conical flow not seen
- Elliptic flow and spectra data show:
 - early thermalization
 - partonic collectivity
 - relevance of constituent quark DOF
- Particle distributions with equilibrium models:
 - chemical freeze-out ≈ hadronization
 - finite span from chemical to kinetic freeze-out

STAR

The STAR Collaboration

U.S. Labs: Argonne, Lawrence Berkeley, and **Brookhaven National Labs U.S. Universities:** UC Berkeley, UC Davis, UCLA Caltech, Carnegie Mellon, Creighton, Indiana, Kent State, MIT, MSU, CCNY, Ohio State, Penn State, Purdue, Rice, Texas A&M, UT Austin, Washington, Wayne State, Valparaiso, Yale Brazil: Universidade de Sao Paolo China: IHEP - Beijing, IPP - Wuhan, USTC, Tsinghua, SINAP, IMP Lanzhou Croatia: Zagreb University Czech Republic: **Nuclear Physics Institute** England: **University of Birmingham**

France: Institut de Recherches Subatomiques Strasbourg, SUBATECH - Nantes Germany: Max Planck Institute – Munich University of Frankfurt India: Bhubaneswar, Jammu, IIT-Mumbai, Panjab, Rajasthan, VECC Netherlands: **NIKHEF/Utrecht** Poland: Warsaw University of Technology Russia: MEPHI - Moscow, LPP/LHE JINR -Dubna, IHEP – Protvino South Korea: Pusan National University Switzerland: University of Bern

---Backup slides----

Is there conical flow?

existing v₂ scaling data

