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Introduction

The Equation of State (EoS); p,e,s as a function of T is an
unambiguous prediction of the QCD Lagrangian

The EOS is an important input for hydrodynamical models
of heavy-ion collisions

Perturbation theory is only reliable at very large T

Lattice QCD is an applicable non-perturbative tool to deter-
mine the EoS



Lattice QCD introduction
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Fundamental Fields:
Gauge fields:
Uu(z) € SU(3) live on the links

Quarks:
W (x), V()
anti-commuting Grassmann variables live on the sites

Wilson fermions: O(a) artefacts
Staggered fermions: O(az), BUT flavour symmetry violation



Partition function
Z = / dUAWdVe=5E
Sg Is the Euclidean action
Parameters:
gauge coupling g
quark masses m; (¢ = 1..Ny)
(Chemical potentials pu; )
Volume (V) and temperature (7))

Finite T «— finite temporal lattice extension

1

T = —
Nia

Continuum limit: a — O
Renormalization: keep the physical spectrum constant
at finite T':
continuum Iimit <— N; — oo



Improved actions
Sg Is not unique; many possibilities
from flic to clover and tadpole, hyper-improved and even

overimproved improvements

Continuum limit is always important!
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[Heller, Karsch, Sturm '99]
Continuum extrapolation from N; and N; + 2 standard action
may be better than using only Ny with improved action



How reliable is lattice QCD?

At T = 0: Hadron spectrum
based on the QCD Lagrangian (quarks-+gluons)
Nno more — no less than the experimental spectrum
quantitative agreement on the percent level
already in the quenched approximation
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[Hasenfratz, Juge, Niedermayer, 2004]
At T > 0: no clear connection between experiments and lattice (yet)
experiences from 7' = 0 are promising



Equation of state from lattice simulations

energy density (e¢) and pressure (p) from partition function:

T29(log Z)
vV aT

d(log 72)
ov

e(T) = p(T) =T

T,V are varied by a, take derivative with respect of a

e —3p L3 d(log Z)
= ——=a
T4 L3 da

the pressure (p x log[Z]) along the LCP by the integral method:

P 4 d(log Z) 0(log Z)
W_Lt/d(ﬁ’m'a)< o0 ’8(m.a)>



Renormalization of the pressure

We want p(T=0)=0and e(T=0)=0 —
Simulations at both

T>0 (Nt < Ns) and T'=0 (N2> Ns)
are necessary and then subtraction:

p _ Pr PO, s _ <y €0

T4 T T4 T4 T4 T T4 T4

numerical precision needed for the subtraction increases with Nt4
— CPU costs grow faster (C’)(l/a13)) than for T'= 0 simulations

Today
Ny = 4 Is easy
Ny = 6 is difficult
Ny = 8 is a challenge



Wilson fermions: O(a), slower

Recent lattice
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[Ali-Khan et al, '01]

Staggered fermions: (’)(a2), faster
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[Karsch, Laermann, Peikert, 2000]

Ongoing projects: MILC, Bielefeld-Brookhaven-Columbia



Weaknesses of these results

1. Unrealistic quark masses
might be important, since T¢ >mng

2. No Line of constant physics (LCP) used
T = 1/(Nza) is increased with decreasing a
physical spectrum (msz, mg, mp,...) should not change

3. flavour symmetry violation (staggered)
unphysical, large pion non-degeneracy

4. Approximate algorithms were used
R algorithm: systematic error due to finite stepsize
high precision subtraction can be sensitive to it

5. Lattice artefacts
improved action with Ny = 4 only

6 Scale determination
no string-tension in dynamical QCD
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Weaknesses of these results

1. Unrealistic quark masses Use physical mx
might be important, since T, >mg

2. No Line of constant physics (LCP) used Use L P
T = 1/(Nza) is increased with decreasing a
physical spectrum (msz, mg, mp,...) should not change

3. flavour symmetry violation (staggered) Stout improvement
unphysical, large pion non-degeneracy

4. Approximate algorithms were used Use exact
R algorithm: systematic error due to finite stepsize
high precision subtraction can be sensitive to it

5. Lattice artefacts Ny = 4,6
improved action with Ny = 4 only

6 Scale determination qq force at 0.5fm
no string-tension in dynamical QCD



New lattice results for the EOS
[Y. Aoki, Z. Fodor, SDK, K.K. Szabo]

Main features:
e Physical mass spectrum is used for 7' > 0 simulations

e Use of LCP:
physical spectrum unchanged while a changes

e Exact algorithm (RHMCQC) is used
to get rid of stepsize errors

e Supressed flavour symmetry violation
1-loop improved Symanzik gauge action +
stout improved fermionic action

e TwoO sets of lattice spacings
Ny = 4 and 6 simulations

e Unambiguous scale setting



Stout smearing:

replace the U(xz), gauge links with V' stout links:

V=P [ —> +p(4_>’+u +m+u)]

unphysical non-degeneracy of pions largely reduced:

Stout improvement
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e experimentally relevant

e nice peak in dxss/00
(pseudo)critical coupling for
physical quark masses:

Ny = 4.

T. = 186(3)(3) MeV
Nt — N

T. = 193(6)(3) MeV



Chiral condensate

Simulations for m,; = {1,3,5,7,9}mppys at finite T
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extrapolate to m =0 — 2oNd order phase transition expected

Ny=6: Te(m = 0) = 191(5)(2) MeV



The

pressure,energy density and entropy density for Ny = 4
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T he pressure,energy density and entropy density for Ny = 6
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Scaling of the pressure
Comparison of Nty =4 and Ny = 6
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e NO good scaling yet. Most probably Ny = 4 is too coarse
— Ny = 8 might be needed for final continuum-extrapolated result



Summary, Conclusions

Previous results on EoS suffer from several weaknesses

New results improve on these points

Transition temperature using different methods: T, ~ 189(8) MeV

EoS is presented for two sets of |attice spacings

Continuum-extrapolation already possible, but
better to wait for even finer lattices



