RHIC results from LHC perspectives

Carlos A. Salgado

Physics Department CERN, TH-Division

Studying the medium with high- p_t particles

carlos.salgado@cern.ch, http://home.cern.ch/csalgado

Quark Matter 2005, Budapest

Why high- p_t ?

Different scales studied

Unique property of jet quenching as a probe of the medium

 $\Rightarrow t_{\text{form}} \leq L \Longrightarrow$ shower in a medium

 \Rightarrow $R_{\rm had}$ not known for a medium

Solution Servative estimate [meson/baryon in AuAu] $\implies p_t \gtrsim 6 \text{ GeV}$

 \Rightarrow Intermediate $p_t \longrightarrow$ interplay radiation–thermalization–hadronization

The Medium-induced gluon radiation spectrum

[BDMPS (1996); Zakharov (1997); Wiedemann (2000); GLV (2000)]

Quark Matter 2005, Budapest

Inclusive particle suppression

$\longrightarrow \text{light mesons}$ $\longrightarrow \text{heavy quarks}$

Quark Matter 2005, Budapest

R_{AA} for light mesons at RHIC

[Eskola, Honkanen, Salgado, Wiedemann (2004)]

- \Rightarrow Multiple emission: Poisson distribution
- \Rightarrow Hadronization in vacuum at high- p_t

Data favors a large time-averaged transport coefficient

$$\hat{q} \sim 5 \dots 15 \frac{GeV^2}{fm}$$

[Gyulassy, Levai, Vitev 2002; Arleo 2002; Dainese, Loizides, Paic 2004; Wang, Wang 2005; Drees, Feng, Jia 2005; Turbide, Gale, Jeon, Moore 2005...]

Quark Matter 2005, Budapest

Surface emission

The medium produced at RHIC is so dense that only particles produced close to the surface can escape [Muller (2003)]

[Dainese, Loizides, Paic (2004); Eskola, Honkanen, Salgado, Wiedemann (2004)]

Quark Matter 2005, Budapest

Energy and centrality dependence

$\hat{q} \propto \text{density}$

Talk by X-N Wang; A. Adil Poster+talk

Extrapolation to the LHC

Scale \hat{q} by the expected density at the LHC

High- p_t hadrons are fragile objects even at the LHC

Quark Matter 2005, Budapest

Heavy flavor at RHIC

[Dokshitzer, Kharzeev 2001; Djordjevic, Gyulassy 2003; Zhang, Wang, Wang 2003; Armesto, Salgado,

Wiedemann 2004]

Flavor + mass hierarchy: $\Delta E_g > \Delta E_q^{m=0} > \Delta E_Q^{m\neq 0}$

[Armesto, Dainese, Salgado, Wiedemann 2005]

Charm quark suppression similar to light mesons

[Armesto, Cacciari, Dainese, Salgado, Wiedemann, Preliminary; Djordjevic, Gyulassy, Vogt, Wicks 2005]

Constrain $b/c \rightarrow e^-$ with pp!

 \Rightarrow Possibility to further constrain \hat{q}

Parallel talks by N. Armesto and M. Djordjevic

New data

Quark Matter 2005, Budapest

Heavy-to-light ratios at the LHC

[Armesto, Dainese, Salgado, Wiedemann (2005)]

Jets in HIC???

Quark Matter 2005, Budapest

Jets in HIC???

 \Rightarrow Multiplicity background for RHIC (LHC)

Beaut,

- ightarrow $E^{
 m bg}\sim$ 20 (100) GeV in a cone R=0.3
- ightarrow $E^{
 m bg}\sim$ 50 (250) GeV in a cone R=0.5

 \Rightarrow Intrinsic uncertainties for jet-energy calibration

• Out-of-cone fluctuations — decrease with R

Background fluctuations — increase with R

Compromise, LHC, $R \sim 0.3 \div 0.5$ + small- p_t cuts + different methods of background substraction

ALICE @ LHC

Quark Matter 2005, Budapest

RHIC results from LHC perspectives – p.12

Medium-modification of jet shapes

Jet heating at the LHC, E_t =100 GeV [Salgado, Wiedemann 2004]

Two-particle correlations — jets at **RHIC**

Small- p_t cuts at RHIC

Trigger bias $d\sigma/dp_t \sim 1/p_t^n$

- Small energy loss for trigger particle
- Small energy loss for assoc. for large p_t^{assoc}
- Trigger bias \implies Surface and tangential emission

Small broadening

Quark Matter 2005, Budapest

New data

Removing the cut-off at RHIC

Interplay between the soft bulk and high- p_t

- \Rightarrow Associated particles are softer
- Large broadening (two-peaks?) in the away side

New data

Removing the cut-off at RHIC: Interpretations

Shock waves: measure sound velocity in the medium

[Satarov, Stoeker, Mishustin 2005; Casalderrey-Solana, Shuryak, Teaney 2004; Ruppert, Muller 2005]

Cherenkov radiation [Dremin 2005; Koch, Majumder, Wang 2005]

Initial state effect [Baier, Kovner, Nardi,

Wiedemann 2005]

Jet quenching + flow [Armesto, Salgado, Wiedemann 2004]

Parallel talks: A. Majumder, J. Casalderrey-Solana

Medium-induced gluon radiation

- \Rightarrow Softer than vacuum \longrightarrow maximum at $\omega \sim \hat{q}^{1/3} \sim 1...3$ GeV
- \Rightarrow Small-energy radiation \Longrightarrow Large angle
 - Possibility of secondary radiation for large angle

 \Rightarrow Effect disappears for increasing $p_t^{
m assoc} \gtrsim \hat{q}^{1/3}$

Limitations/future developments

$\longrightarrow Medium \\ \longrightarrow Shower evolution$

Quark Matter 2005, Budapest

Improving the model of the medium

Beyond the medium as a collection of static scattering centers

 \Rightarrow Hydro: consistent picture of low- p_t RHIC data given by $T^{\mu\nu}$ + E.o.S.

- > $T^{\mu\nu} = (\epsilon + p) u^{\mu} u^{\nu} p g^{\mu\nu}$ is the fundamental object describing the medium $\implies \hat{q}(T^{\mu\nu})$
- Sumple, longitudinal flow $\hat{q} = c \epsilon^{3/4} \rightarrow c (T^{zz})^{3/4} = c (p + \Delta p)^{3/4}$

$$\Delta p = (\epsilon + p)u^z u^z = 4p \frac{\beta^2}{1 - \beta^2}$$

⇒ Flow: additional source of induced radiation ⇒ Asymmetric jet shapes in $\phi_0^{0.1}$ the $\eta \times \phi$ plane

Armesto, Salgado, Wiedemann 2004

 \Rightarrow Full 3-D hydrodynamical simulation coupled to jet-quenching needed

Quark Matter 2005, Budapest

Measuring collective flow with jets

Longitudinal flow

Space-time picture of collision

[STAR preliminary, D. Magestro HP04]

Transverse flow

[Armesto, Salgado, Wiedemann 2004]

Quark Matter 2005, Budapest

 \Rightarrow Beyond the independent (Poisson) gluon emission

- Include energy constraints
- Include possibility of secondary branching...
- In the vacuum DGLAP evolution equations, or implemented in MC by Sudakov form factors

$$\Delta(t_0, t) \equiv \exp\left[-\int_{t_0}^t \frac{dt'}{t'} \int dz \frac{\alpha_s}{2\pi} P_{j,i}(z)\right] \,,$$

giving the probability of no-branching

 \Rightarrow Can this be generalized to the medium?

$$\omega \frac{dI^{\text{vac}}}{d\omega dk_t^2} \sim \frac{1}{k_t^2} \qquad \qquad \omega \frac{dI^{\text{med}}}{d\omega dk_t^2} \sim \frac{1}{k_t^4} \left(\frac{\omega_c}{\omega}\right)^n; n = \frac{1}{2}....2$$

With formation time effects regularizing the divergences

Toward an evolution equation

Is there a Q^2 -dependence on the energy loss?

Medium—modified fragmentation functions computed as higher-twist corrections in nuclear-DIS [Guo, Wang 2000–2003]

Enhance the singular parts of the vacuum splitting functions in the Modified-Leading-Log-Approximation [Borghini, Wiedemann 2005]

$$P_{qq}(z) = C_F \left(\frac{2(1+f_{\text{med}})}{(1-z)_+} - (1-z)\right)$$

Parallel talk N. Borghini

Jet quenching and the sQGP

- \Rightarrow Very large value of $\hat{q} \sim$ 5...15 GeV²/fm obtained from fit to the data
 - \Rightarrow Taking $\hat{q} = c \epsilon^{3/4} \Rightarrow c \gtrsim 5 c_{ideal}^{QGP}$ [estimation for ideal QGP: Baier 2002]
 - Subscripts Expectations from relation to CGC: $Q_{\text{sat}}^2 \sim \hat{q} L \gtrsim \mathcal{O}(10 \text{ GeV}^2)$

 $\hat{q}\gtrsim$ 5 times larger than expected

- Why? Several possibilities
 - Formalism not quantitatively reliable? (incomplete)
 - Scattering cross sections \gtrsim 5 times larger than perturbative estimates \implies relation with sQGP hypothesis
 - Solution Flow effects very significant: \hat{q} measures ϵ AND flow
- Jet quenching has the potential to give answer to these questions and study the medium properties with a quantified effect.

 \implies New data presented at this Conference!

Messages from RHIC

- \Rightarrow Jet quenching is the dominant medium mechanism at high- $p_t \implies$ Very dense medium produced at RHIC
- \Rightarrow Heavy quarks able to constrain energy loss \longrightarrow reference for e^{-1}
- \Rightarrow Trigger bias effects make it difficult to quantify broadening
- \rightarrow High- $p_t \longrightarrow$ fragmentation in the vacuum
- **Moderate/Small-** $p_t \longrightarrow$ extreme broadening in away side
- Small $\Delta \phi$ -broadening in near side, but dissappears with p_t ?
- \rightarrow New constrains to energy loss (\hat{q})

Lessons for the LHC

 \Rightarrow High- p_t particles still fragile objects \longrightarrow Study true jets

- Experiment: Remove trigger bias, study associated radiation
- \Rightarrow Open mind in the (wider) intermediate- $p_t \longrightarrow$ measure flow with jets?

 \Rightarrow Theory: Improve model for medium and shower – Q^2 -dependence