Hard Probes at STAR

STAR

James Dunlop Brookhaven National Laboratory for the STAR collaboration

Towards precision in high p_T phenomena

 $p+p \rightarrow jet+jet (STAR@RHIC)$

• Medium is dense: how to make this more quantitative?

- Advance the understanding of inclusive suppression
 - Cu+Cu: precise variation of geometry
 - Hadron identification to 10 GeV/c: recombination contributions
- Raise Q²: properties of clean dijet signatures
- Decrease coupling of probe to medium: γ and heavy flavor

Inclusive Suppression

Suppression an established probe of the density of the medium

Inclusive Suppression: R_{AA} in Cu+Cu

STAR

From Au+Au to Cu+Cu: change collision geometry in precise, controlled way Result: Cu+Cu suppressed, but less so than Au+Au

See poster, van Leeuwen (91)

Geometrical Dependence of R_{AA}

R_{AA} scales smoothly from Au+Au through Cu+Cu to p+p

STAR

- With exception of p+p, uncertainties dominated by Glauber calculation
- Scaling prefers $N_{part}^{1/3}$, though $N_{part}^{2/3}$ not strongly excluded

See poster, van Leeuwen (91)

Baryon enhancement

- Large enhancement in baryon/meson ratios in central Au+Au collisions
 - Maximum at p_T~3 GeV/c, after which approach towards p+p
- Indication of dominant nonfragmentation contribution
- At what p_T is this contribution no longer dominant?

Year 2 Baryon R_{CP}

• Year 2: clear baryon/meson separation at intermediate p_T

– K* and ϕ have mass ~proton, but R_{CP} of a meson

- Consistent with constituent quark recombination as dominant mechanism
- At what p_{τ} is this contribution no longer dominant?
 - Indications of approach for $p_T > -5$ GeV/c, but uncertainties large

Identified Particle R_{CP}

• ϕ definitively follows K⁰ at intermediate p_T: mass is not the source

STAR

• All particles consistent for $p_T > \sim 5$ GeV: dominance of fragmentation?

See talks, Barannikova(1a), Cai(1a), Salur(5a)

R_{AA} of Strange Particles

STAR

See talk, Salur(5a)

The Limitations of R_{AA}

STAR

Surface bias leads effectively to saturation of R_{AA} with density Challenge: Increase sensitivity to the density of the medium

Emergence of away-side peak

Emergence of dijets

Increase associated p_T threshold also

For the first time: clear jet-like peaks seen on near and away side in central Au+Au collisions

See talk, Magestro(3b)

Observation 1 on away-side peaks: Widths

Away-side widths similar for central, peripheral Au+Au, 40-80%, away-side $8 < p_{\tau}(trig) < 15 \text{ GeV/c}$ 1 dN Ntrig d(△仲) σ_{∆φ} = 0.22/∄(0.03 0.06 p_⊤(assoc)>6 GeV 0.04 0.02 Au+Au, 0-5%, away-side N_{trig} d(∆φ) $\boldsymbol{\sigma}_{_{\!\!\!\Delta\Phi}}^{} = \boldsymbol{0.25} \pm \boldsymbol{0.03}$ 0.06 preliminary 0.04 0.02 π Widths unchanged with centrality: seeing those partons that fragment in vacuum? See talk, Magestro(3b)

STAR Observation 2 on away-side peaks: Yields

Changing the probe: towards γ -jet in Au+Au

- Direct γ does not couple to medium or fragment into jets
 - remove from trigger both surface bias, fragmentation uncertainty in Q²
- Correlations triggered on γ : clear near and away-side peaks
- Strong contamination remains from π^0 decay daughters

 Work in progress to separate out direct y QM05: Hard Probes at STAR, Dunlop

STAR

See talk, Dietel(3b)

Charm production

Expectation: Radiative Energy Loss of Heavy Quarks

- Coupling of heavy quarks to the medium reduced due to mass
- Expectation: even for high medium density, higher R_{AA} for single electrons from heavy flavor than for light hadrons

STAR Alternative scenario: collisional contribution

Large collisional (not radiative) interactions also produce large suppression and $v_{\rm 2}$

Charm in Au+Au

- Important test of radiative picture: reduction in energy loss from heavy quark mass
- Non-photonic electrons dominantly from charm decay
- Suppression in Au+Au relative to d+Au

STAR

See talk,Zhang(5c)

Heavy Flavor R_{AA}

R_{AA} to 10 GeV/c in non-photonic electrons

STAR

- Suppression is approximately the same as for hadrons
- B contribution? Challenge for radiative picture? See talk, Bielcik(5c)

QM05: Hard Probes at STAR, Dunlop

Charm v₂

Flow for non-photonic electrons consistent with those of light mesons Favors scenario in which charm quark flows as light quarks Strong coupling of charm quark to the medium

See talk, Laue(5a)

Future Outlook

- Rich physics still on tape: Half of year 4 Au+Au, 80% of year 5 Cu+Cu statistics still to be processed
- Future runs:

- Full EMC barrel installed and ready for use for triggered data over 2 units in η
- Full barrel TOF upgrade for identified correlations, resonances, electrons
- DAQ1000 upgrade of DAQ to remove deadtime, increase dataset size
- Forward Meson Spectrometer upgrade for definitive measurements on CGC
- Heavy Flavor Tracker for definitive measurements of open charm

Conclusion

- Wealth of new data: Real quantitative progress
 - Length dependence: Cu+Cu

- Fragmentation dominance: particle ID to 10 GeV/c
- Correlations: clear dijets and beginning of γ -jet
- Heavy flavor: direct D⁰, electron R_{AA} and v₂

- Increasing constraints, emerging puzzles in picture of radiative energy loss
 - Can we move towards precision, and perhaps place an upper bound on the energy density?
 - From this, may be able to determine the number of degrees of freedom: Müller, Rajagopal, hep-ph/0502174
 - Suppression and v_2 of heavy flavor: what is the origin? Can this be reconciled with the suppression patterns of light hadrons?

STAR Talks in Parallel Sessions

STAR

- O. Barannikova (1a)
- B. Mohanty (1b) collisions
- X. Cai (1b)
- M. D. Oldenburg (2a)
- G. Wang (2a)
- T. Dietel (3b)
- D. Magestro (3b)
- J.G. Ulery (3c)
- Z. Chajecki (4a)
- P. Chaloupka (4a)
- C.A. Pruneau (4c)
- S. Salur (5a)
- F. Laue (5a)
- J. Bielcik (5c)
- H.-B. Zhang (5c)
- K. Schweda (11a)

Results of identified pions, kaons, (anti)-protons up to transverse momentum of 12 GeV/c from STAR
Particle production at forward rapidity in d+Au and Au+Au with STAR experiment at RHIC
Measurements of nuclear modification factor and elliptic flow of ϕ with STAR
Event-wise azimuthal anisotropy (v ₂) for identified hadrons
Anisotropic flow in AuAu and CuCu at 62 and 200 GeV
Azimuthal correlations of high- p_{τ} photons and hadrons in Au+Au collisions at RHIC
High-p _T $\Delta \phi$ correlations with increased statistics in STAR
Full reconstruction of charged hadrons correlated with high $p_T h^{+-}$, π^+ , π^- , protons and antiprotons from STAR
Identical particle correlations in STAR
Non-identical particle correlations at 62 and 200 GeV at STAR
Probing collision dynamics with fluctuation and correlation studies at RHIC
System size dependence of strangeness production
Measurement of non-photonic single electron v ₂ at STAR
Centrality dependence of heavy flavor production from single electron measurement in 200 GeV Au+Au collisions
Open charm production in 200 GeV Au+Au collisions

A heavy flavor tracker for STAR at RHIC

STAR

SIAR

U.S. Labs: Argonne, Lawrence Berkeley, and **Brookhaven National Labs U.S. Universities:** UC Berkeley, UC Davis, UCLA Caltech, Carnegie Mellon, Creighton, Indiana, Kent State, MIT, MSU, CCNY, Ohio State, Penn State, Purdue, Rice, Texas A&M, UT Austin, Washington, Wayne State, Valparaiso, Yale Brazil: Universidade de Sao Paolo China: IHEP - Beijing, IPP - Wuhan, USTC, Tsinghua, SINAP, IMP Lanzhou Croatia: Zagreb University Czech Republic: **Nuclear Physics Institute** England: University of Birmingham

France: Institut de Recherches Subatomiques Strasbourg, SUBATECH - Nantes Germany: Max Planck Institute – Munich University of Frankfurt India: Bhubaneswar, Jammu, IIT-Mumbai, Panjab, Rajasthan, VECC Netherlands: NIKHEF/Utrecht Poland: Warsaw University of Technology **Russia:** MEPHI - Moscow, LPP/LHE JINR -Dubna, IHEP – Protvino South Korea: Pusan National University Switzerland: University of Bern

STAR Posters

STAR

Section 1

- A. Mischke (18): High transverse momentum inclusive neutral pion production in d-Au and p-p collisions at RHIC
- D. Mishra (19): Measurements of \triangle and K* production in d+Au collisions at 200 GeV
- J.H. Putschke (24): Universal behavior of the nuclear modification factor at RHIC?
- T.A. Trainor (31): Two-particle correlations from 200 GeV p-p collisions: a precision reference for A-A collisions at RHIC
- G. van Buren (33): The ratio Σ^0/Λ at RHIC

Section 3:

- R. Bellwied (60): Strange particle production mechanisms in pp collisions at RHIC
- B. Beverkhny (61): Initial studies of two particle azimuthal correlations using Xi baryons in p+p collisions at RHIC
- L. Gaillard (67): Identified two-hadron correlations at STAR using lambdas, anti-lambdas, and K⁰_s with charged hadrons at 200 GeV
- T.W. Henry (68): Nuclear k_T in d+Au collisions from multiparticle jet reconstruction at STAR
- M.J. Horner (69): Systematic study of azimuthal dependence of h⁺⁻ spectra correlated with high p_T h⁺⁻ from STAR
- D. Magestro (80): Near-side $\Delta\eta$ correlations of high-p_T hadrons at RHIC
- R.L. Ray (87): Dissipation and fragmentation of low-Q² partons in Au-Au collisions at RHIC observed with two-particle correlations
- M. van Leeuwen (91): High- p_T spectra, v_2 , and azimuthal correlations from run 4 data from STAR

Section 4

- S. Chattopadhyay (97): Systematic study of charged-charged and gamma-charged correlations in d+Au collisions at 200 GeV
- H.P. Gos (101): Baryon-baryon correlations in Au+Au collisions at 62 GeV and 200 GeV
- M. Jedynak (102): Charged kaon correlations at STAR
- D. Prindle (112): Bulk-medium hadronization and response to parton stopping in Au-Au collisions at RHIC observed with two-particle correlations

Section 5

- H. Caines (131): The effects of varying the correlation volume on strangeness
- M.A. Lamont (146): High momentum strange baryon anomalies in heavy ion collisions at RHIC
- C. Markert (151): The influence of medium properties on the resonance production in RHIC collisions
- C. M. Mironov (152): STAR measurements of strange hadron R_{AuAu} and R_{dAu}
- M.G. Munhoz (155): Measurements of K0 and (anti)lambda production in Au+Au collisions at 62 GeV
- F. Simon (163): Forward lambda production and nuclear stopping power in d+Au collisions at RHIC
- J. Speltz (164): Energy dependence systematics of strange and multi-strange particle production
- A. Tang (167): Strangelet search at RHIC
- R.A. Witt (174): Measurements of Xi0(1530) in 200 GeV collisions at RHIC

Section 6:

- M.M. de Moura (183): Direct photon analysis at STAR
- J.E. Gonzalez (185): J/ψ production through dielectron measurements in STAR
- T. Kolleger (190): Search for Upsilon's in Au+Au collisions with STAR
- A.A. Wetzler (212): Inclusive γ and π^0 from the STAR TPC in Au+Au collisions at 62 GeV

Section 7

R. Sahoo (230): Transverse energy measurement in Au+Au collisions at 62.4 GeV at RHIC