BRAHMS overview

Paweł Staszel, Marian Smoluchowski Institute of Physics Jagiellonian University for the BRAHMS Collaboration

Quark Matter Budapest, 4 - 9 August, 2005

The Relativistic Heavy Ion Collider

Outline

- 1. Detector setup.
- 2. General (bulk) characteristics of nucleus-nucleus reactions.
- 3. Elliptic flow (for AuAu @ 200).
- 4. Baryon to meson ratios.
- 5. High p_{T} suppression.
- 6. Summary.

Broad Range Hadron Magnetic Spectrometers

Quark Matter, Budapest 2005

Particle identification summary

1.5<η<4 **0**<η<1

2 σ cut	TOFW	TOFW2	TOF1	TOF2
Κ /π	2.0 GeV/c	2.5 GeV/c	3.0 GeV/c	4.5 GeV/c
K / p	3.5 GeV/c	4.0 GeV/c	5.5 GeV/c	7.5 GeV/c
	C4 Threshold (MRS): $\forall \pi$ / K separation 9 GeV/c		RICH (FS): $\forall \pi \ / \ K \ separation \ 20$ GeV/c •Proton ID up to 35 GeV/c	

Charged Particle Multiplicity

Energy density: Bjorken 1983 $e_{BJ} = 3/2 \times (\langle E_t \rangle / \pi R^2 \tau_0) dN_{ch}/d\eta$

assuming formation time t_o=1fm/c: >5.0 GeV/fm³ for AuAu @ 200 GeV >4.4 GeV/fm³ for AuAu @ 130 GeV >3.7 GeV/fm³ for AuAu @ 62.4 GeV

BRAHMS

K/π energy dependence, AuAu

Anti-particle to particle ratios

•At 200 GeV: π⁻/π⁺ = 1.0, K⁻/K⁺ = 0.95, pbar/p = 0.75

•At 62 GeV: π⁻/π⁺ = 1.0, K⁻/K⁺ = 0.84, pbar/p = 0.45,

• At |y|<1 matter⇔antimatter

Chemical freeze-out

 \Rightarrow

• pbar/p verus K'/K⁺ : good statistical model description with $\mu_B = \mu_B(y)$ with T~170MeV •But this describes also energy depencency at $y=0 \Rightarrow$ only μ_B controls the state of matter •STAR and NA47 measures pbar/p versus Ξ^{-}/Ξ^{+} It is not true for p+p

BRAHMS

Kinetic freeze-out: AuAu @ 200GeV

BRAHMS preliminary

- Flow velocity increases with centrality.
- Temperature decreases with centrality.

Comparing 200GeV and 62GeV data In the same N_{part} bin, we see reduction in flow by ~10% and no change in T

<u>the same anti-correlation is observed</u> <u>versus y:</u>

- •Flow velocity decreases with rapidity.
- •Temperature increases with rapidity

Lower density \Rightarrow lower pressure \Rightarrow less flow faster freeze out \Rightarrow higher temperature

BRAHMS

Oana Ristea poster #50

pbar/ π^2 ratios vs. centrality and η (parton recombination)

•Smooth increase from peripheral to central in AuAu at $\sqrt{s_{NN}} = 200 \text{ GeV}$

•Centrality dependence is stronger at midrapidity than forward rapidity

• The maximum is shifted to low p_T at forward rapidity

BRAHMS

p/pi ratios vs p_t (parton recombination, hydro)

no significant difference between y=0 and y~1 flow/mass effect ?

P. Staszel - Jagiellonian University, Kraków Quark Matter, Budapest 2005

pbar/ π^{-} scaling with N_{part}

Quark Matter, Budapest 2005

K/ π ratios at η =3.1, Au+Au @200GeV

High p_t Suppression & Jet Quenching

Particles with high p_t's (above ~2GeV/c) are primarily produced in hard scattering processes early in the collision

p+p experiments \rightarrow hard scattered partons fragment into jets of hadrons

In A-A, partons traverse the medium \rightarrow Probe of the dense and hot stage

If QGP \rightarrow partons will lose a large part of their energy (induced gluon radiation) \rightarrow suppression of jet production \leftrightarrow Jet Quenching

BRAHMS

Experimentally \rightarrow depletion of the high p_t region in hadron spectra

Charged hadron invariant spectra

Nuclear Modification Factor $R_{AA} = \frac{\text{Yield(AA)}}{N_{\text{COLL}}(AA) \times \text{Yield(NN)}}$ Scaled N+N reference $R_{AA} < 1 \leftrightarrow \text{Suppression relative to}$ scaled NN reference

SPS:

data do not show suppression enhancement (R_{AA}>1) due to initial state multiple scattering ("Cronin Effect")

 $\mathbf{R}_{CP} = \frac{\text{Yield}(0-10\%)/\text{N}_{COLL}(0-10\%)}{\text{Yield}(40-60\%)/\text{N}_{COLL}(40-60\%)}$

BRAHMS

Au+Au: comparison 200 GeV between 62 GeV

Quark Matter, Budapest 2005

Two systems comparison @ 62.4GeV

R_{CP} dependence on η for AuAu @200 GeV and 62.4 GeV

19

Quark Matter, Budapest 2005

R_{CP} and R_{AA} for identified hadrons at y~3.1, Au+Au @ 200GeV

P. Staszel - Jagiellonian University, Kraków Quark Matter, Budapest 2005

R_{AA} versus centrality for identified hadrons

Quark Matter, Budapest 2005

....more on R_{AA} rapidity dependence

Strong energy absorption model from a static 2D matter source. (Insprired by A.Dainese (Eur.Phys.J C33,495) and A.Dainese,

C.Loizides and G.Paic (hep-ph/0406201))

- Parton spectrum using pp reference spectrum
- Parton energy loss $\Delta E \sim q.L^{**2}$
- q adjusted to give observed R_{AA} at $\eta \sim 1$.

The change in dN/d η will result in slowly rising $R_{_{AA}}$.

The modification of reference pp spectrum causes the $R_{_{A\!A}}$ to be approximately constant as function of η .

$R_{\scriptscriptstyle dAu}$ and $R_{\scriptscriptstyle AA}$ for anti-protons and pions @200

BRAHMS PRELIMINARY

• both R_{dA} and R_{AA} show enhancement for p-bar

P. Staszel - Jagiellonian University, Kraków Quark Matter, Budapest 2005

Summary

BRAHMS

Large hadron multiplicities

Almost a factor of 2 higher than at SPS energy(\leftrightarrow higher ϵ) Much higher than pp scaled results(\leftrightarrow medium effects)

Identified hadron spectra

Good description by statistical model

Large transverse flow consistent with high initial density

v2(pt) is seem to not depend on rapidity

p/π

show strong η dependency for given energy depend only on N_{par}

High-p_⊤

suppression increases with energy for given centrality bin weak dependency on rapidity of R_{AA} which is consistent with surface jet emission R_{CP} can hide or enhance nuclear effects At y=3.2 R_{AA} shows larger suppression than R_{dA}

The BRAHMS Collaboration

I.Arsene⁷, I.G. Bearden⁶, D. Beavis¹, S. Bekele⁶, C. Besliu⁹, B. Budick⁵,
H. Bøggild⁶, C. Chasman¹, C. H. Christensen⁶, P. Christiansen⁶, R. Clarke⁹, R.Debbe¹,
J. J. Gaardhøje⁶, K. Hagel⁷, H. Ito¹⁰, A. Jipa⁹, J. I. Jordre⁹, F. Jundt², E.B. Johnson¹⁰,
C.E.Jørgensen⁶, R. Karabowicz³, E. J. Kim⁴, T.M.Larsen¹¹, J. H. Lee¹, Y. K. Lee⁴,
S.Lindal¹¹, G. Løvhøjden², Z. Majka³, M. Murray¹⁰, J. Natowitz⁷, B.S.Nielsen⁶,
D. Ouerdane⁶, R.Planeta³, F. Rami², C. Ristea⁶, O. Ristea⁹, D. Röhrich⁸,
B. H. Samset¹¹, D. Sandberg⁶, S. J. Sanders¹⁰, R.A.Sheetz¹, P. Staszel³,
T.S. Tveter¹¹, F.Videbæk¹, R. Wada⁷, H. Yang⁶, Z. Yin⁸, and I. S. Zgura⁹

 ¹Brookhaven National Laboratory, USA, ²IReS and Université Louis Pasteur, Strasbourg, France ³Jagiellonian University, Cracow, Poland, ⁴Johns Hopkins University, Baltimore, USA, ⁵New York University, USA ⁶Niels Bohr Institute, University of Copenhagen, Denmark ⁷Texas A&M University, College Station. USA, ⁸University of Bergen, Norway ⁹University of Bucharest, Romania, ¹⁰University of Kansas, Lawrence,USA ¹¹ University of Oslo Norway

48 physicists from 11 institutions

Limiting Fragmentation

Shift the $dN_{ch}/d\eta$ distribution by the beam rapidity, and scale by $\langle N_{part} \rangle$. Lines up with lower energy \Rightarrow limiting fragmentation

P. Staszel - Jagiellonian University, Kraków Quark Matter, Budapest 2005