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We propose that power-law tailed hadron spectra may be viewed as stemming from a
matter in an unconventional equilibrium state typical for non-extensive thermodynamics.
A non-extensive Boltzmann equation, which is able to form such spectra as a stationary
solution, is utilized as a rough model of quark matter hadronization. Basic ideas about a
non-extensive simulation of the QCD equation of state on the lattice are presented.

1. Particle spectra

Statistical models have been often applied to hadron physics. Starting with Rolf Hage-
dorn’s statistical model of meson resonances [1], several attempts occurred to describe
hadron multiplicities in elementary collisions by means of statistical distributions. The
very idea of a phase transition between confined and deconfined quark matter relies on
traditional equilibrium thermodynamics. The search for quark matter began assuming a
local thermal equilibrium in an otherwise exploding fireball [2,3]. Experimental particle
spectra are, however, not purely exponential: both exponential and power-law functions
have been fitted to pion, kaon and antiproton spectra. Although the traditional ap-
proach explains the power-law tail at very high pT values by pQCD calculations [4], the
non-extensive statistics provides a unified view for the whole spectrum. Pion spectra from
heavy ion collisions at RHIC seem to contain a power-law part exceeding the scaled pQCD
yield [5]. Another evidence can be extracted from the minimum bias pion pT -spectrum
form RHIC AuAu collisions at 200 GeV (Fig.1 in Ref. [6]). Here a Tsallis-distribution fit
can already be made at the pT -region between 1 and 4 GeV. The extrapolation of this
fit almost coincides with the fit to the whole observed range between 1 and 12 GeV. So
one concludes that the power-law behavior is not restricted hard scales. Furthermore in
the non-extensive statistical approach there is a connection between the soft properties
(temperature T ) and the hard ones.

The experimentally measured specific hadron spectra may reflect statistical properties
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of the precursor matter [7]. Fortunately transverse momentum spectra are influenced only
partially, at their low end, by final state interactions and late resonance decay [8]. Since

the relativistic energy is given by E = mT cosh y with transverse mass mT =
√

p2
T + m2

and rapidity y for a particle with mass m, the best way to study statistical equilibrium
distribution of hadrons is the comparison of mT -spectra at rapidity y = 0 for different
particles. A universal behavior [9] indicates that the one-particle distributions depend on
the energy only and not on all momentum components: a basic feature of generalized and
conventional thermal distributions.

2. Non-Extensive Boltzmann Equation

Non-conventional distributions can be based on a non-conventional entropy formula,
which replaces the Boltzmann entropy. Such a formula is the Tsallis entropy, discussed
vividly in recent years. This non-extensive thermodynamics is intended to be an effective
theory for non-equilibrium and long-range order phenomena [10]. Its canonical distri-
bution is a power law, which occurs in particle and heavy-ion physics experiments. As
nonlinear models, two generalizations of the Boltzmann equation have been investigated:
The generalization of the product rule for probabilities (dropping statistical indepen-
dency) leads to a non-multilinear Boltzmann equation [11], while considering two-particle
energies composed by an extended addition rule mounds in the non-extensive Boltzmann
equation [12].

The general structure of the Boltzmann equation describes the evolution of the prob-
ability f1 = f(�p1) of a one-particle state by considering possible transitions to and from
other states: ḟ1 =

∫
234

w1234 (f34,12 − f12,34). Here the dot denotes a total time deriva-

tive (Vlasov operator) comprising the essential evolution of the one-particle phase space
density, f1. The indices 1234 refer to two particles before and after a microcollision. The
transition probability, w1234 contains conditions on conserving momentum and energy:

w1234 = M2
1234 δ((�p1 + �p2) − (�p3 + �p4)) δ(E12 − E34), (1)

with E12 total two-particle energy before and E34 after the collision. The particle density
factors, f12,34 and f34,12 weight the transition yields for a 3 + 4 → 1 + 2 and for a 1 + 2 →
3 + 4 process, respectively. In our approach [12] we keep the statistical independency,
f12,34 = f1f2, but generalize the energy addition formula to a nontrivial composition
rule E12 = h(E1, E2). Rules not being a simple sum, h(x, y) �= x + y, present a non-
extensive energy composition. Associative rules can be mapped to the simple addition [13]:
X(h) = X(x) + X(y), unique up to a constant factor. In each microcollision X(E1) +
X(E2) = X(E3) + X(E4) holds, and the stationary solution is hence given by f(p) =
1
Z

exp(−X(E)/T ). A statistical dispersion relation is obtained due to the mapping of the
general composition: the total sum, X(Etot) =

∑
i X(Ei) is conserved.

In order to utilize such a non-extensive Boltzmann equation for the stationary state
Tsallis-distributed parton matter, we consider an evolution from initially boosted Fermi
spheres. During the simulation we take out pairs of partons with a color singlet against
octet probability 1/9. This rate turns out to be low enough not to disturb the Tsallis
distribution remarkably. Fig.1 shows the resulting energy (mT ) distribution of such pairs.
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Figure 1. A model hadron spectrum emerging by sampling with a probability 1/9 from
the non-extensive parton cascade simulation with massless partons.

It is interesting to note that an exponentially growing mass spectrum, originally pro-
posed by Hagedorn and recently checked against latest experimental data in Ref. [14],
with its famous consequence of having a limiting (or Hagedorn-) temperature for such
a system, can be reconstructed on the basis of Tsallis distributed quark constituents.
This approach [15] assumes that the Tsallis distribution of the quarks and antiquarks is
folded into mesonic and baryonic distributions of the conserved total energy satisfying
X(E) =

∑
i X(Ei). The Hagedorn temperature is given by TH = Ec/d.

3. Lattice strategy

The implementation of the Tsallis distribution in lattice field theory can be based on
the superstatistics approach [16]. The Tsallis expectation value of an observable Â[U ]
over lattice field configurations U is of interest. It may include the timelike link length,
say on the power v: Â = θ vA. The Tsallis expectation value then is an average over all
possible at link lengths according to a Gamma distribution of at/as. We obtain:

〈A〉TS =
1

ZTS

cc

Γ(c)

∫
dθ θ c−1e−c θ

∫
DUA [U ] θ ve−S[θ,U ] (2)

with ZTS obtained by requiring 〈1〉TS = 1. The θ dependence of the lattice gauge ac-
tion is known long. Due to the time derivatives the electric(”kinetic”) part scales like
ata

3
s/(a2

ta
2
s) = as/at, and the magnetic (”potential”) part like ata

3
s/(a2

sa
2
s) = at/as. This

leads to the following expression for the general lattice action: S [θ, U ] = a θ + b/θ, where
a = Sss[U ] sums space-space, and b = Sts[U ] time-space oriented plaquettes. In the c → ∞
limit the scaled Gamma distribution approximates δ(θ−1), (its width narrows extremely,
while its integral is normalized to one), and one gets back the traditional lattice action
S = a + b, and the traditional averages. For finite c, one can exchange the θ integration
and the configuration sum (path integral) and obtains exactly the power-law-weighted
expression: 〈A〉TS =

∫ DU Wv,c [U ]A [U ] /
∫ DU W0,c [U ], with the Gamma fluctuating

time-link averaged general weight factor,

Wv,c =
cc

Γ(c)

∫
dθ θ v+c−1e−c θe−S[θ,U ]. (3)
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The θ integration can be carried out analytically using the replacement θ = et
√

b/(a + c).
The result contains the K Bessel function:

Wv,c =
cc

Γ(c)

(
b

a + c

) c+v
2

2 Kv+c

(
2
√

b(a + c)
)

. (4)

The K-Bessel function has an exponentially decreasing asymptotics, so we are in principle
able to utilize known Monte Carlo techniques in order to calculate Tsallis expectation
values. On the other hand we cannot simply use old data, produced according to the
weight e−(a+b), because the argument of the K-Bessel function is not a + b. This makes it
necessary to redo lattice calculations – but only with a slightly increased effort.
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