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The transverse momentum distribution of partons in the proton is studied with the
help of di-hadron correlations. A simple randomization model is compared to the data.

1. INTRODUCTION

Di-hadron (and photon-hadron) correlations offer a statistical tool to study jets in
the complicated final-state environment created in a relativistic collision of heavy nuclei.
Other methods of examining jet properties are rendered ineffective here by total multi-
plicities in the thousands. Jets produced in hard partonic collisions are modified by the
nuclear final state, and thus carry information on the hot and dense partonic medium
they traverse[1]. The goal of jet tomography[2] is to extract the properties of the medium
from an analysis of the modifications suffered by the produced jets.

However, jet structure and the associated di-hadron correlations have a rich content
already in proton-proton collisions. The correlations appear, in general, as peaks in the
di-hadron distribution as a function of two variables: the azimuthal difference ΔΦ and e.g.
rapidity difference Δy (equivalently, pseudorapidity or polar angle may be used). In this
contribution we concentrate on the physics encoded in the widths of the near and away-
side peaks of the di-hadron distribution as a function of ΔΦ in proton-proton collisions.
With midrapidity particle production in mind, the Δy dependence will be suppressed. In
addition to its intrinsic interest relative to the transverse structure of the proton, this work
can serve as a first step in providing the necessary background for di-hadron correlations
in the collision of heavy nuclei. It is interesting to note that similar studies are carried
out in proton-antiproton collisions at the Tevatron[3].

One experimental difficulty in connection with studying the transverse structure of the
proton is that we seek to extract parton-level information from final-state hadrons. After
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separating initial and final-state effects, the initial-state information can be related to the
intrinsic transverse momentum of partons in the proton. The history of efforts along these
lines goes back to Feynman, Field and Fox on the theory side[4] and to the work of the
CCOR collaboration experimentally[5], and has recently been summarized in Ref. [6].

2. CORRELATION SCENARIOS AND DEGREE OF RANDOMIZATION

The properties of the near-side peak relative to a trigger hadron in the di-hadron az-
imuthal distribution are determined by the fragmentation process. The deviation from a
sharp back-to-back arrangement observed in the azimuth of the away-side hadrons con-
tains information not only about fragmentation, but also about the transverse momentum
of partons in the proton. We focus on this latter aspect in this contribution.

Let us take as our staring point transverse momentum conservation in a 2 → 2 partonic
process as schematically pictured on the left-hand-side of Fig. 1. The initial partons
have transverse momenta kT1 and kT2, while the secondary partons are characterized by
transverse momenta pT1 and pT2, respectively, and kT1+kT2 = pT1+pT2. This constraint
results in a strongly correlated outgoing parton (and therefore jet) pair. Given the initial
parton transverse momenta, and looking upon the outgoing transverse momentum pT1 as
a“trigger”, pT2 and all correlations are fully determined.
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Figure 1. Left: strongly-correlated parton-pair production in a 2 → 2 reaction. Right: partially
correlated parton-pair production where Φ2 is randomized (see text).

If the transverse momentum distributions of the initial partons are two-dimensional
Gaussians with width σ2

k in both protons, this strongly correlated (“sc”) case yields

〈(pT2 sin(Φ2 − Φ1))
2〉sc = 2 · σ2

k and 〈(pT2 cos(Φ2 − Φ1))
2〉sc = p2

T1 + 2 · σ2
k . (1)

Thus, in a strongly correlated parton system the sinusoidal correlation directly displays
the width of the intrinsic transverse momentum distribution without any dependence on
other variables. This correlation is sought experimentally. However, there is no sterile
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2 → 2 process in real life, and the explicit transverse momentum conservation equation
will contain the transverse momenta of all partons involved, weakening the correlations
of the two final-state jet-initiating partons. We will describe this partially correlated
situation by introducing a randomization of the transverse momentum pT2. Thus, for
example, the azimuthal angle Φ2 acquires a distribution around its strongly correlated
value, determined by the dominant 2 → 2 collision as on the right-hand side of Fig. 1.

We examine two types of randomization in the transverse plane: (i) a one-dimensional
Gaussian randomization in azimuth with width σΦ, and (ii) uniform randomization in
the azimuth region [Φ2 − δΦ, Φ2 + δΦ]. We numerically evaluate the correlations (1)
in the randomized (partially correlated, “pc”) situation. To describe the deviation of
these quantities from their strongly correlated values normalized by p2

T1, we introduce
dimensionless quantities α and β according to

α ≡ 4
[
〈(pT2 sin(ΔΦ))2〉 − 2σ2

k

]
/p2

T1 , β ≡ 4 [〈(pT2 cos(ΔΦ))2〉 − 2σ2
k] /p

2
T1 , (2)

where ΔΦ = Φ2 − Φ1. Fig. 2 displays our results as functions of σΦ (solid lines) and δΦ
(dashed lines), respectively. The quantities α, β and γ (where γ is a suitable measure of
the level of correlations) are independent of σk and pT1. They depend only on σΦ and δΦ,
respectively. We see that the partially correlated system turns into a fully randomized
one when σΦ = π/2 or δΦ = π/2, i.e. when the opening angle of the randomization cone
becomes π. The shape of the curves slightly depends on the nature of the microscopic
processes represented in our picture by the different randomization prescriptions.

Figure 2. Parameters α, β and γ as functions
of σΦ (solid) and δΦ (dashed). A horizontal
line in the lower left indicates α in pp colli-
sions at

√
s = 200 GeV. In the upper right a

magnified view shows α at ISR energies.

Figure 3. Data published for hadron-hadron
correlations in pp collisions at ISR [5] and
for parton-parton correlation at RHIC [7] to-
gether with the fit for a partially correlated
parton system (see text).
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3. COMPARISON TO DATA

Data on dijet correlations in pp collisions at
√

s = 31, 45, 62 GeV (ISR, [5]) and at√
s = 200 GeV (RHIC, [7]), displayed in Fig. 3, show a dependence on the transverse

momentum of the trigger hadron pT,trig. In this contribution we disregard most of the
complications associated with the hadronization of jets, and simply use the replacement
pT,trig = z · pT1 to take into account that the measured trigger hadron carries a fraction
of the parton transverse momentum. Then, using (2) and the above replacement, the

traditionally normalized width, 〈|kTy|〉 =
√

(〈(pT2 sin(Φ2 − Φ1))2〉)/π takes the form

〈|kTy|〉pc =

√[
α · p2

T,trig / (4z2) + 2 · σ2
k

]
/π (3)

in the partially correlated case. Eq. (3) can be compared to data. At
√

s = 200 GeV,
the fragmentation correction is 〈z〉pT >3 GeV = 0.75± 0.05 [7]. For the ISR we use here an
energy-independent average 〈z〉 ≈ 0.85 [5,7]. The energy dependence of z should be taken
into account in a more detailed study. Together with the data, Fig. 3 shows our best fit
with eq. (3). At

√
s = 200 GeV, the value of 2 σ2

k = 2.42 GeV2, in good agreement with
the value used earlier in a transverse-momentum augmented perturbative QCD calculation
in pp collisions [8]. We obtain the width of the parton transverse momentum distribution
by extrapolating the fit to pT,trig = 0. The details of extracting the width from di-hadron
correlations (as opposed to idealized di-parton correlations) are given elsewhere[9]. After
considering the effects of fragmentation, we obtain the width of the parton transverse
momentum distribution from the data (taking the limit pT,trig → 0) in terms of the
widths of the near and away-side peaks (σN and σA, respectively) as

〈|kTy|〉 ≡
√

2σ2
k/π =

√
〈p2

T,assoc〉(σ2
A − σ2

N ) / [π(1 − 2 σ2
N )] / 〈zassoc〉 , (4)

where pT,assoc and zassoc are the transverse momentum and the momentum fraction of the
associated particle. We propose an evaluation of data on near and away-side correlations in
this manner. The denominator under the square root in (4) may be important numerically.

These considerations may be extended to e.g. d+Au and Au+Au collisions to determine
the degree of randomization in those cases. Studying the variation with trigger momentum
between p+p and d+Au collisions may provide an alternative way to distinguish initial
and final state effects. Perturbative QCD calculations incorporating intrinsic transverse
momentum will serve as a background to jet tomography studies.
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