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Several popular parameterizations of the freeze-out conditions in ultra-relativistic heavy-
ion collisions are shortly reviewed. The common features of the models, responsible for
the successful description of hadronic observables, are outlined.

1. INTRODUCTION

In this talk I present several models which turned out to be quite successful in repro-
ducing the experimentally measured hadron spectra in nucleus-nucleus collisions. The
discussed models use concepts borrowed from relativistic hydrodynamics but they do not
include the complete time evolution of the system. For this reason, they may be called
hydro-inspired (freeze-out) models. The measured particle spectra reflect properties of
matter at the stage when particles stop to interact. This moment is called the kinetic
(thermal) freeze-out. Hydro-inspired models help us to verify the idea that matter, just
before the kinetic freeze-out, is locally thermalized and exhibits collective behavior, such
as the transverse and longitudinal expansion. If this is really the case, i.e., if the hydro-
inspired models describe the data well, we may infer the thermodynamic properties of
matter at freeze-out, such as the values of the temperature and flow, and request that the
advanced hydrodynamic models reproduce this configuration.

In my opinion, the real aim of the freeze-out models is to form a simple link between
sophisticated hydrodynamic calculations [1–6] describing the full time evolution of matter
(with the inclusion of the phase transition) and the rich bulk of the experimental data
describing soft phenomena. This is an appealing idea, however, one encounters several
problems on the way to achieve this task, since certain features of the hydrodynamic
models and the freeze-out models are quite different. For example, at the first sight
one can realize that typical shapes of the freeze-out hypersurfaces used in the advanced
hydro calculations and in the freeze-out models are quite different. Clearly, further work
is necessary to make the connection between the hydro calculations and the freeze-out
models more consistent.

∗This work was supported in part by the Polish State Committee of Scientific Research, Grant No. 2
P03B 05925.

1



2 W. Florkowski

In any case, an attractive feature of the hydro-inspired models is that they are very
effective parameterizations of the final state, that use few parameters possessing clear
physical interpretation. As long as we do not all have hydrodynamic codes that we are
able to run on our PCs, the freeze-out models form a very convenient and easy accessible
tool to interpret the data. In this talk I intend to review several models which give
consistent description of many observables (not only of the particle spectra). Their list
includes: different versions of the blast-wave model [7,8], the Buda-Lund model [9–11],
the Seattle model [12,13], the Durham model [14,15], the Cracow single-freeze-out model
[16–18], and THERMINATOR [19].

Below, I will refer only to the Au+Au collisions studied at the top RHIC energies; I
want to show how different models describe the same set of data rather than to show how
one model is able to describe different physical situations. Examples of the application
of the thermal approach to calculate the spectra at lower energies may be found in Refs.
[20,21].

2. COOPER-FRYE FORMULA AND EMISSION FUNCTION

Before going into the discussion of the blast-wave model, I would like to make a few
remarks about the Cooper-Frye formula [22]. It is frequently used in the hydrodynamic
calculations to obtain the momentum distribution of the emitted particles. In this talk,
the Cooper-Frye formula will serve us as a reference point for the characteristics of different
freeze-out models. Its standard form is

Ep
dN

d3p
=
∫
pµdΣµ(x) feq (p · u(x)) , (1)

where Ep =
√
m2 + p2 is the energy of a particle, dΣµ(x) a three-dimensional element of

the freeze-out hypersurface, uµ(x) is the hydrodynamic flow, and feq is the equilibrium
distribution function. In the general case, the hypersurface includes the time-like (defined
here by the condition: dΣµdΣµ = (dΣ0)2 − (dΣ1)2 − (dΣ2)2 − (dΣ3)2 > 0) and space-
like (dΣµdΣµ < 0) parts. The advanced hydrodynamic calculations include both parts,
while hydro-inspired models include typically only the time-like parts. The success of the
hydro-inspired models may indicate that the contributions from the space-like parts are
negligible. On the other hand, detailed microscopic studies show that the contributions
from those parts are substantial and difficult to include in the consistent way, unless one
uses the approach based on the kinetic theory [23–33].

The Cooper-Frye formula may be rewritten in such a way that the distribution of the
particles in the momentum space is given as the space-time integral over the so-called
emission or source function

Ep
dN

d3p
=
∫
d4x

∫
pµdΣµ(x′)δ4(x′ − x) feq (p · u(x′)) ≡

∫
d4xS(x, p). (2)

The emission function defines the space-time distribution of the points from which the
observed hadrons are emitted. Very often Eq. (2) is used with S(x, p) modeled without
any reference to the Cooper-Frye formula. Such a procedure lays emphasis on the fact
that the hydro-inspired models should aim mainly at the reconstruction of the realistic
emission function.



Particle spectra and hydro-inspired models 3

r

t

 z  =  0
 t y p i c a l  f r e e z e - o u t  c u r v e  i n
     h y d r o d y n a m i c  m o d e l s

 t y p i c a l  f r e e z e - o u t  c u r v e  i n
 h y d r o - i n s p i r e d  ( f r e e z e - o u t )
  m o d e l s

Figure 1. Freeze-out curves in the Minkowski space, i.e., projections of the freeze-out
hypersurfaces on the plane z = 0 for cylindrically symmetric systems, in the advanced
hydro calculations (dashed line) and in the freeze-out models (solid line).

3. BLAST-WAVE MODELS

Different versions of the blast-wave model originate from the paper by Siemens and
Rasmussen [34], where a relativistic formula for the particle distribution corresponding
to a thermalized and radially expanding system was first given. More recent applications
use the same concepts but different geometries of the expansion, more suitable for the
description of the ultra-relativistic heavy-ion collisions, are considered [35].

3.1. Cylindrically symmetric systems
For boost-invariant and cylindrically symmetric systems, the Cooper-Frye formula (1)

leads to the very popular model of Schnedermann, Sollfrank and Heinz [7]. For constant
transverse flow, vT = tanhρ = const, one obtains the rapidity and transverse-momentum
distribution of the emitted particles in the form

dN

dyd2pT
=

eβµ

2π2
mTK1 [βmT cosh(ρ)] I0 [βpT sinh(ρ)]

1∫

0

dζ r(ζ)t(ζ)
dr

dζ

− e
βµ

2π2
pTK0 [βmT cosh(ρ)] I1 [βpT sinh(ρ)]

1∫

0

dζ r(ζ)t(ζ)
dt

dζ
, (3)

where mT =
√
m2 + p2

T is the transverse mass, β = 1/T is the inverse temperature, µ is the

chemical potential, ρ is the transverse rapidity, t and r =
√
r2
x + r2

y are the coordinates of

the freeze-out hypersurface at z = 0, while K0,1 and I0,1 are the modified Bessel functions.
The integrals on the right-hand-side of Eq. (3) involve the parameterizations of the freeze-
out position coordinates and times in terms of the parameter ζ. In practical applications,
the second line on the right-hand-side of Eq. (3) is very often neglected, which means
that the variations of the emission times are ignored. This procedure implicitly denotes
that the particle emission takes place at a constant laboratory time (at z = 0), see Fig. 1.



4 W. Florkowski

An example of the procedure outlined above is the blast-wave fit performed recently
by the BRAHMS Collaboration [36]. The optimal value of the temperature obtained
from the fit to the Au+Au data (

√
sNN = 200 GeV, midrapidity region, centrality class

0-10%) is 110 MeV, while the average transverse flow velocity equals 0.65 c. In this, and
other similar cases, we have to be aware that a theoretical boost-invariant model has
been applied to the system which is not boost-invariant as a whole. In my opinion, such
procedure is justified only at the top RHIC energies in the midrapidity region where the
rapidity distribution may be regarded as flat within 1 or at most 2 units of rapidity.

3.2. Cylindrically non-symmetric systems
For boost-invariant and cylindrically non-symmetric systems one may use the param-

eterization of the emission function introduced by Retière and Lisa [8]. It takes into
account the possible ellipsoidal shape of the system created in non central collisions. The
emission function proposed in [8] may be obtained from the Cooper-Frye formula if the
constant evolution time, τ = τ0 = const, is replaced by a gaussian distribution

S(x, p) = Z mT cosh(η − y) Ω(r, φs) e
−(τ−τ0)2

2∆τ2
1

ep·u/T ± 1
. (4)

Here Z is an arbitrary normalization constant, η = 1/2 ln (t+ z)/(t− z) is the spacetime
rapidity, tanφs = ry/rx, ∆τ is the emission time, and Ω describes the spatial distribution
of matter in the transverse plane

Ω(r, φs) = Ω(r̃) =
1

1 + e(r̃−1)/as
, r̃(r, φs) ≡

√√√√(r cos(φs))2

R2
x

+
(r sin(φs))2

R2
y

. (5)

The parameter as describes the surface diffuseness of the source. In the limit as → 0, the
matter in the transverse plane is confined in an ellipse defined by the parameters Rx and
Ry. The explicit form of the flow field uµ (and of the expression p · u) is given in Ref. [8],
here we only note that the expansion velocity in the transverse plane is perpendicular to
the elliptical shell confining the matter.

The optimal values of the temperature obtained by Retière and Lisa in their analysis
of three different centrality classes (0-5%, 15-30%, 60-92%, the Au+Au collisions at the
beam energy of

√
sNN = 130 GeV, combined PHENIX and STAR data [37,38]) are: 107,

106, and 100 MeV, respectively. The corresponding values of the transverse flow are:
0.52 c, 0.50 c, and 0.47 c.

3.3. Summary on the blast-wave models
When applied to the Au+Au collisions at the top RHIC energies, the blast-wave models

give good description of the pT -spectra, the elliptic flow, and the HBT radii at midrapidity.
An interesting feature of the Retière-Lisa model is that it includes, as the special case,
the situation where the in-plane flow is not stronger than the out-of-plane flow, but the
correct sign and magnitude of the coefficient v2 is reproduced. This feature is realized
by the geometry of the model which implies in this case that more matter flows in the
reaction plane than out of the reaction plane.

The blast-wave fits to the data indicate short evolution times, τ ≤ 10 fm, and very
short emission times, ∆τ ≤ 1 fm. The typical value of the temperature is about 100
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MeV. The blast-wave models do not predict the absolute normalization of the spectra,
hence an extra parameter is required to normalize each considered spectrum. In addition,
many of the applications of the blast-wave model do not include the effects of the decays
of resonances.

4. BUDA-LUND MODEL

The standard version of the Buda-Lund model was formulated to describe cylindrically
symmetric systems with no constraint of the boost-invariance [9,10]. Later the model
was extended to describe ellipsoidally symmetric systems [11]. The standard emission
function of the model has the form

S(x, p) =
g

(2π)3

mT cosh(η − y)

exp
(
uµ(x)pµ
T (x)

− µ(x)
T (x)

)
± 1

1

(2π∆τ 2)1/2
exp

[
−(τ − τ0)2

2∆τ 2

]
, (6)

where the temperature and chemical potential depend on the position coordinates

µ(x)

T (x)
=
µ0

T0
− r2

2R2
G

− η2

2∆η2
, (7)

1

T (x)
=

1

T0

(
1 +

T0 − Ts
Ts

r2

2R2
G

) (
1 +

T0 − Te

Te

(τ − τ0)2

2∆τ 2

)
. (8)

In Eq. (8), the quantity T0 is the temperature in the center at the mean freeze-out time, Ts

is the temperature on the surface at the mean freeze-out time, and Te is the temperature
in the center at the end of particle emission. The flow pattern assumed in the Buda-Lund
model has a Hubble-like structure, with the velocity of the fluid element proportional to
its distance from the center. Such patterns appear in the analytic [39] and numerical [40]
solutions of the equations of the relativistic hydrodynamics. For physical interpretation
of other model parameters we refer to the original papers [9,10].

The Buda-Lund model gives a very good description of the pT -spectra, v2 and HBT
radii in the full rapidity range. The fits to the experimental data indicate small values
of the evolution and emission times which are compatible with those obtained from the
blast-wave analysis (for Au+Au at

√
sNN = 200 GeV the optimal Buda-Lund fit yields:

T0 = 196 MeV, Te = 117 MeV, Ts = 89.7 MeV, RG = 13.5 fm, Rs = 12.4 fm, τ0 =
5.8 fm, ∆τ = 0.9 fm, and ∆η = 3.1). The effects of the decays of resonances are not
included explicitly and the information about the normalization of the spectra is derived
from the HBT data. The Buda-Lund fits indicate a freeze-out temperature distribution,
with an average freeze-out temperature of 100 - 120 MeV. However, about 1/8th of the
particles is found to be emitted from a very hot center with T ∼ 200 MeV. A comparison
of this result with the lattice QCD results for the critical temperature was considered as
an indication of quark deconfinement in Ref. [41].

5. SEATTLE MODEL

The Seattle model formulated in Refs. [12,13] describes cylindrically symmetric sys-
tems. No assumption about the boost-invariance is made. The main characteristic feature
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of the model is inclusion of the effects of the final-state interaction of the outgoing pions.
Such effects are taken into account by the use of the distorted wave functions Ψ(−)

p (x).
The formalism, following Ref. [42], is based on the generalized emission function, which
may be used to get the one-particle and two-particle distributions in the momentum space

S(x, p, q) =
∫
d4K ′S0(x,K ′)

∫ d4x′

(2π)4
e−iK

′·x′Ψ(−)
p1

(x + x′/2)Ψ(−)∗
p2

(x− x′/2), (9)

p = (p1 + p2)/2, q = p1 − p2. (10)

The quantities p1 and p2 are the pion four-momenta. In the special case, where the
distorted wave functions are replaced by the plane waves, the standard formulation is
recovered with the emission function reduced to S0,

Ψ(−)
p (x)→ eip·x, S(x, p, q)→ S0(x, p)eiq·x, S(x, p, 0)→ S0(x, p). (11)

The function S0 resembles the parameterization used in the Buda-Lund model, however,
in this case the thermodynamic parameters are constant,

S0(x, p) =
mT cosh η√

2π(∆τ)2
exp

[
−(τ − τ0)2

2∆τ 2
− η2

2∆η2

]
Ω(r)

(2π)3

1

exp(p·u−µπ
T

)− 1
. (12)

The distribution of matter is characterized by the function

Ω(r) =
1

[
exp

(
r−RWS

aWS

)
+ 1

]2 , r =
√
r2
x + r2

y. (13)

The optimal values of the parameters obtained from the fit to the STAR data [43] describ-
ing the Au+Au collisions at

√
sNN = 200 GeV are the following [13]: T = 215 MeV, µπ =

123 MeV, τ0 = 8 fm, ∆τ = 2.7 fm, RWS = 12 fm, aWS = 0.8 fm, ∆η = 1, ηf = 1.5, w0 =
0.142±0.046 fm−2, and w2 = 0.582 ± 0.014 + i(0.123±0.002). The parameter ηf defines
the magnitude of the transverse flow [12], whereas the parameters w0 and w2 define the
optical potential which modifies the outgoing pion wave functions. The strength of the
attraction inside the medium is greater than m2

π, hence a pion behaves to large extent as
a massless particle. This behavior may be related to the phenomena discussed in Refs.
[44,45].

The Seattle model describes successfully the pion transverse-momentum spectra and
the HBT radii in the region pT > 100 MeV. On the other hand, the model predicts non-
monotonic structures in the transverse-momentum region below 70 MeV. Such predictions
were confronted with the PHOBOS data in Ref. [46] and certain discrepancies between
the data and the model were found. Very likely the non-monotonic structures are due
to the sudden change of the optical potential in the transverse direction and a better
agreement with the data may be achieved by the modification of this dependence.

6. DURHAM MODEL

The Durham model, proposed by Renk in Refs. [14,15], is based on the parameterization
of the hydrodynamic expansion in the proper-time interval τ0 ≤ τ ≤ τf . The pressure
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profiles determine the evolution of the boundaries of the system, then the boundaries
determine the evolution of the entropy density. In the next step, the equation of state
is used to calculate the pressure. The iterative procedure ensures that this approach
is self-consistent, i.e., the pressure profiles which determine the evolution of the system
agree with the pressure obtained from the equation of state. The freeze-out happens at
a fixed temperature Tf and the Cooper-Frye formula is used to calculate the spectra.
The optimal parameters obtained from the fit to the PHENIX data [47,48] include: τ0 =
1 fm, τf = 19 fm, Tf = 110 MeV. The Durham model describes nicely the pT -spectra and
HBT radii. No resonance decays are included in the calculation of the spectra. In my
opinion, a direct comparison with the real hydrodynamic calculations will strengthen the
importance of this model, if the validity of the proposed parameterization is confirmed.

7. CRACOW SINGLE-FREEZE-OUT MODEL

The standard version of this model [16] describes boost-invariant and cylindrically sym-
metric systems. The model is based on the extreme assumption that the chemical and
kinetic freeze-outs coincide. The thermodynamic parameters of the model are obtained
from the analysis of the ratios of hadron abundances [49]. In this respect the Cracow
model is closely related to different statistical models developed recently by many groups
[50–55]. An important feature of the model is that a complete set of hadronic resonances is
included in the calculation of various physical observables. The resonances are included by
the use of the emission function that corresponds to the Cooper-Frye formula convoluted
with the momentum splitting functions B and the space-time displacement functions δ,

S (x1, p1) = E1
dN1

d3p1d4x1
=

∫
d3p2

Ep2

B (p2, p1)
∫
dτ2Γ2e

−Γ2τ2

∫
d4x2δ

(4)
(
x2 +

p2τ2

m2

− x1

)
...

×
∫
dΣµ (xN) pµN δ(4)

(
xN +

pN τN
mN

− xN−1

)
fN [pN · u (xN)] (14)

Here the indices 1, ..., N denote particles in a cascade of decaying resonances (N refers to
the resonance decaying on the freeze-out hypersurface, while 1 refers to the final observed
particle, e.g., a pion, other symbols are defined in [16–18]). The freeze-out hypersurface
is defined by the conditions:

τinv =
√
t2 − r2

x − r2
y − r2

z = const, r =
√
r2
x + r2

y < rmax (15)

uµ =
xµ

τinv
=

t

τinv

(
1,
rx
t
,
ry
t
,
rz
t

)
, dΣµ = uµ τ 3

inv sinh(ρ)cosh(ρ) dρdηdφ. (16)

The standard version of the model uses only 4 parameters: temperature (T ), baryon chem-
ical potential (µB), τinv, and rmax. The values of the temperature and baryon chemical
potential, obtained from the analysis of the ratios of hadron abundances, are independent
of centrality. For the top RHIC energies one finds T = 165.5 MeV and µB = 28.5 MeV.
The expansion parameters τinv and rmax are determined by the fits to the pT -spectra, and
their values depend on centrality [56].
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The Cracow model gives a good description of the ratios of hadronic observables, pT -
spectra, the HBT radii Rside and Rout. It also gives satisfactory description of the balance
functions [57] and of the invariant masses of the pion pairs [58]. Generalizations of the
model describing systems without cylindrical symmetry [59] or boost-invariance [35] were
proposed to account for the observed values of the coefficient v2 and the pT -spectra at
finite values of the rapidity as measured by BRAHMS [60].

8. THERMINATOR, SHARE, THERMUS

THERMINATOR [19] is the Monte-Carlo version of the Cracow and blast-wave models
(the blast-wave model has been extended in this case to include the complete set of
hadronic resonances). The program uses the same input from the Particle Data Tables [61]
as SHARE [62]. With the physical input of the thermodynamic and expansion parameters,
THERMINATOR delivers the full space-time information about cascades of decaying
resonances. The values of the thermodynamic parameters may be taken from SHARE
or from other programs used to study the ratios of hadronic abundances, for example
from THERMUS [63]. The information about the space-time positions of the produced
hadrons may be used to study different types of correlations. Moreover, the Monte-Carlo
approach facilitates the inclusion of the experimental cuts and acceptance.

9. HUMANIC’S RESCATTERING MODEL

In the end of this talk I would like to note that simple transport models may play a
similar role as hydro-inspired models. An example of such approach is Humanic’s model
[64]. This model is a Monte-Carlo simulation of the evolution of purely hadronic system.
The initialization stage may be considered as equivalent to the hadronization process. The
transverse geometry is determined by the overlapping region of the two colliding nuclei,
while the initial pT - and y-distributions are assumed to have the following shape

1

mT

dN

dmT

= C
mT

exp(mT/T )± 1
,

dN

dy
= De

− (y−y0)2

2σ2
y , (17)

with the optimal parameters: T = 300 MeV and σy = 2.4. The longitudinal positions and
times of the initialized hadrons are: zhad = τhad sinhy and thad = τhad coshy, where τhad is
the initial (proper) time, with the standard value of 1 fm.

The subsequent evolution of the system includes binary collisions of: π, K, N , ∆, Λ,
ρ, ω, η, η′, φ and K∗. The freeze-out happens (dynamically) at about 30 fm (Au+Au,
130 GeV). The model gives successful description of the slope parameters, v2(m, pT , η),
and the pT and centrality dependence of the HBT radii. The results are sensitive to τhad;
larger values of τhad imply fewer collisions and the rescattering-generated flow is reduced.

10. CONCLUSIONS

A common feature of the hydro-inspired models is the short evolution time, τ0 < 10 fm,
and even shorter emission time ∆τ << τ0. Another common feature is a large value of
the transverse flow, 〈vt〉 ∼ 0.5 c. Altogether, these observations indicate an explosive
scenario for the Au+Au collisions observed at the top RHIC energies.
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Models which do not include resonances or pion final-state interactions, yield rather low
values of the freeze-out temperature, T ∼ 100 MeV. We know, however, that the effects
of the resonance decays must be important, since large abundances of certain resonances
were observed [65,66]. In this situation, I think that the hydro-inspired models should
enter a new stage where the effects of both the transverse flow and the resonance decays
are commonly taken into account. Another development of the hydro-inspired models
should include the emission from the space-like parts. An example of such approach is a
recent paper by the Kiev-Nantes group [67].
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