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I discuss recent results on the Color Glass Condensate which is a dense saturated gluonic
state and appears as the universal picture of hadrons or nuclei at very high energies.

1. Introduction

Since the previous Quark Matter conference held in January 2004, we have seen a very
rapid progress in understanding the physics of the Color Glass Condensate (CGC). There
are mainly three reasons for this sudden progress: First, because new experimental re-
sults reported by the BRAHMS collaboration in QM04 strongly suggested the existence
of the CGC. Good experiments always stimulate theorists and lead to theoretical devel-
opments. Second, because a new interpretation of the Balitsky-Kovchegov (BK) equation
was proposed based on the analogy with reaction-diffusion dynamics. This gave us an
intuitive understanding about the emergence of the saturation scale and the geometric
scaling. Third, because it has been recognized that the BK equation is not complete in
that it does not contain the effects of pomeron loops. This fact drived people to think
hard about the physics beyond the BK equation. These three reasons are all triggers for
the recent rapid progress. Indeed all of such activities happened within one or two years
and some of them are still going on now. Many papers were produced during this short
period. Thus, instead of covering all these activities, I will have to focus on only a few
subjects in this talk. But, in order to make this talk as self-contained and comprehensive
as possible, I will start with presenting our motivation why we study the CGC. Then I
will explain the properties of our basic equation, the BK equation, in an intuitive way
based on the analogies with population dynamics and reaction-diffusion dynamics.

1.1. Color Glass Condensate as the high energy limit of QCD
The most fundamental and general question which motivated our activities is ”What is

the high-energy limit of QCD?.” Here ”high-energy limit” is meant for the limit of large
scattering energy. As I explain below, there are enough reasons to believe that there
exists qualitatively different picture for hadrons or nuclei when the scattering energy is
asymptotically large. If it indeed exists, then the natural questions to be asked next by
experimentalists and theorists may be, respectively, ”Is it already seen in experiments at
current energy?”, and ”How can we treat it? Can we use weak-coupling techniques?”.
These are the questions which we always have in our minds, and I will give answers to
them in this talk. But, before doing so, let me first introduce two important experimental
results which suggest the possible form of the high energy limit of QCD.
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The first one is F2(x, Q2) structure function measured in deep inelastic scattering (DIS)
at HERA [1]. The data show steep rise of F2 with decreasing x, which is ordinarily
attributed to the increase of gluon density in a proton. Since going smaller x corresponds
to increasing scattering energy, this implies that high density gluons can be seen in a
highly accelerated proton. The next experimental result is the hadronic cross section at
high energy. For example, total cross section for proton-proton scattering, that is available
in the particle data book [2] for quite a wide range of energy, shows very slow growth
with increasing energy. The most recent PDG followed the analyses by the COMPETE
collaboration [3] and adopted the parametrization σab = Zab + B ln2(s/s0) + · · · whose
second term gives the leading energy dependence of the data. Here, σab is the (total)
cross section for scattering between hadrons a and b, Zab is just a constant, and s is the
total energy squared. This form of the cross section is motivated by the Froissart bound
which is a result of unitarity in the S-matrix theory. Also important is the fact that the
coefficient B is universal, that is, independent of the species of scattering hadrons.

These two expermental results suggest that the limit of large scattering energy will be
significantly different from the ordinary picture of hadrons, and will be characterizd by
many gluons, unitarity, and universal picture. In a frame where most of the total mo-
mentum is carried by the target, the target can be treated as a state having these three
properties. Recently, this new state of matter which becomes relevant at high energy has
been named as the Color Glass Condensate [4]. This name is after the following obser-
vations. First of all, it is made of gluons (”small-x gluons”) which have color and carry
small fractions x � 1 of the total momentum of the hadron. Next, these small-x gluons
are created by slowly moving color sources (partons with larger x) which are distributed
randomly on the two dimensional disk (the Lorentz contracted hadron). This situation is
very similar to that of a glass whose constituents are disordered and appear to be frozen
in short time scales. Lastly, the density of small-x gluons becomes very large until it is
saturated to some value. Typically the occupation number of gluons is of O(1/αs) � 1 at
saturation, which is like a condensate of bosons. As the scattering energy is increased,
the hadrons undergo multiple production of small-x gluons, and eventually become the
CGC. Therefore, one can say that the high energy limit of QCD is the Color Glass Con-
densate. Note that this claim is as correct as the statement about the other limits of
QCD: high temperature/density limit of QCD is the QGP/color superconductor, which
now everyone believes true. In the same sense, if one goes to high energy limit in QCD,
one will necessarily encounter the CGC. Note also that these three different limits allow
for weak-coupling descriptions powered by sophisticated resummation schemes.

2. The Balitsky-Kovchegov equation

Properties of the CGC are specified by correlation functions of gluons (or Wilson lines
made of gluon fields), and change of the CGC with increasing energy is determined by
”evolution” equations for these correlation functions. In particular, the 2-point correlation
function determines basic properties of the CGC and the evolution for this is given by
a nonlinear integro-differential equation called the Balitsky-Kovchegov (BK) equation [5].
Physically, the 2-point correlation function corresponds to the scattering amplitude N of
a ”color dipole” off the CGC, and can be identified with the gluon number in the target
(CGC) when the gluon field is not strong. Therefore, the BK equation describes the
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change of gluon number in a target under the change of scattering energy. Explicitly, it
is given by (ᾱs = αsNc/π)

∂

∂Y
NY (x⊥, y⊥) =

ᾱs

2π

∫
d2z⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(y⊥ − z⊥)2
(1)

×{−NY (x⊥, y⊥) + NY (x⊥, z⊥) + NY (z⊥, y⊥) −NY (x⊥, z⊥)NY (z⊥, y⊥)} ,

where NY (x⊥, y⊥) is the scattering amplitude of the qq̄ dipole with x⊥ and y⊥ being the
transverse positions of the quark and the antiquark, and Y ∼ ln s is the rapidity.

As a result of extensive investigation of this equation both in analytic [6–8] and nu-
merical [9] methods, it turned out that there exists saturation regime whose borderline is
given by the saturation momentum Qs(x, A) so that gluons having transverse momenta
lower than Qs(x, A) are saturated. Intuitively, it corresponds to (inverse of) the typical
transverse size of gluons when the transverse plane of the target is filled with gluons.
Since the saturation momentum depends upon energy (or x) and number of nucleons A
as Q2

s(x, A) ∝ A1/3(1/x)λ with λ � 0.3 [10], it grows with increasing energy (x → 0)
or for large nuclei, and the kinematical region for saturation expands. This particular
dependence upon x and A leads to an interesting observation that the saturation scales
for the ep DIS at HERA and for the Au-Au collisions at RHIC are of the same order
Qs(x ∼ 10−4, A = 1) � Qs(x ∼ 10−2, A ∼ 200). Therefore, if one finds saturation effects
in the HERA data, then there is enough reason to expect similar things in the RHIC
data. Since most of the gluons have their transverse momenta around Qs(x, A), the
weak-coupling treatment becomes better and better with increasing energy αs(Qs) � 1.
Also, the solution at saturation regime (at large rapidities) is robust against the small
perturbation of the initial condition specified at lower rapidities. Thus, the saturation
regime appears to show a universal behavior. Lastly, the solutions to the BK equation
exhibit new scaling phenomena called geometric scaling [6] which naturally comes out due
to the presence of a saturation momentum, and is also observed in experimental data in
a beautiful way [11]. These properties can be intuitively understood by the analogy with
population dynamics and reaction-diffusion dynamics, as I explain below.

2.1. Global energy dependence – the population dynamics
In order to qualitatively understand what happens in the BK equation, let us ignore

the transverse dynamics for the time being. This simplification allows us to find an
interesting analogy with the problem of population growth [12]. Long time ago, Malthus
discussed that growth rate of population should be proportional to the population itself,
and proposed a simple linear equation for the population density N(t):

dN(t)/dt = αN(t). (2)

Its solution N(t)=N0 eαt shows exponential growth known as the ”population explosion.”
Of course everyone knows that such an abnormal future is not our own. Indeed, as the
number of people increases, this equation fails to describe the actual growth because vari-
ous effects such as lack of foods help to reduce the speed of growth. One can simulate such
effects by replacing the growth constant α by α(1 − N) which decreases with increasing
N . This yields the famous logistic equation which was first proposed by Verhulst:

dN(t)/dt = α
(
N(t) − N2(t)

)
. (3)
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Compared to eq. (1), this equation has a nonlinear term with a minus sign. In Fig. 1, we
show the solutions to eq. (3) with different initial conditions at t = 0, together with the
corresponding solutions to the linear equation (2). We can learn much from this simple
result. First of all, at early time t � 1/α, the solution shows rapid exponential growth as
in the linear case. However, as N(t) grows, the nonlinear term (∼ N2) becomes equally
important, and the speed of growth is reduced. Eventually at late time, the solution
approaches to a constant (saturate!) which is determined by the asymptotic condition
dN/dt = 0. Next, note that two solutions of the logistic equation with different initial
conditions approach to each other, and converge to the same value, while deviation of two
solutions of the linear equation expands as time goes. Namely, in the logistic equation,
the initial condition dependence disappears as t → ∞. In other words, the solutions to
the logistic equation show universal behavior at late time.
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Figure 1. Comparison of the solutions N(t)
to eq. (3) [solid lines] and eq. (2) [dashed
lines], with different initial conditions at
t = 0. The figure shows saturation and
initial-condition independence of the logis-
tic solution at late time.

The similarity of these equations to our problem is rather trivial: N and t correspond
to the scattering amplitude N and the rapidity Y , respectively. When the gluon density
is not so high, change of the gluon number (scattering amplitude) with increasing rapidity
is described by the BFKL equation [13]:

∂

∂Y
NY (k⊥) = ᾱsKBFKL ⊗NY (k⊥), (4)

where Nτ (k) is the momentum representation of the dipole scattering amplitude, and
ᾱsKBFKL is the kernel representing the probability of splitting of one dipole into two.
This is essentially a linear equation, and its solution at asymptotically large Y shows
exponential growth NY (k) ∼ exp{(4ᾱs ln 2) Y }. This result is an analog of the population
explosion in the population dunamics. This solution, however, violates the unitarity
bound for the amplitude (Nτ ≤ 1) and the BFKL equation must be modified so as not to
violate the unitarity. In fact, what is missing in the BFKL equation is the recombination
process of two gluons into one, which cannot be ignored when the gluon density is high.
Note that this process effectively reduces the speed of growth. Once this is included, the
BFKL equation is replaced by the BK equation (1). In the momentum space, it can be
schematically represented as

∂

∂Y
NY (k⊥) = ᾱsKBFKL ⊗

(
NY (k⊥) −N 2

Y (k⊥)
)
. (5)

Notice the similarity in the structure with the logistic equation (3). Therefore, it is
now easy to understand that the solution to the BK equation shows (i) saturation and
unitarization of the gluon number and (ii) universality that the solution at very large
rapidity becomes independent of the initial condition.
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2.2. Traveling waves in the reaction-diffusion dynamics
The intuitive picture presented above is not just an analogy, but can be justified as the

limiting case of the remarkable observation made by Munier and Peschanski [14]. In a
series of papers, they established the following fact:

Fact: Within a reasonable approximation, the BK equation in the momentum space (5)
can be rewritten as the FKPP (Fisher, Kolmogorov, Petrovsky, Piscounov) equation

∂tu = ∂2
xu + u − u2 (6)

where t ∼ Y, x ∼ ln k2
⊥ and u(t, x) ∼ NY (k⊥).

The FKPP equation is a famous equation in non-equilibrium statistical physics covering
many interesting phenomena such as directed percolation, pattern formulation, spreading
of epidemics, etc., and has been investigated in great detail. The dynamics described by
this equation is called the reaction-diffusion dynamics because the last two terms represent
”reaction” part which is equivalent to the right-hand side of the logistic equation (3) with
α = 1, while the first term represents the diffusion. (Now it is easy to understand
that the logistic equation (3) indeed comes out under the constant mode approximation
∂u/∂x = 0.) Therefore, the solution to this equation is determined due to the interplay
between these two effects. As we saw before, the logistic part induces the transition from
unstable (exponentially growing) state to stable (saturated) state at some position x. On
the other hand, the stable region expands due to the effect of diffusion. Therefore, it is
very natural that the FKPP equation has a traveling wave solution. Typical traveling
wave solutions at different time t and t′ > t are shown in Fig. 2.

u(
x,

t)

x

v(t)
Figure 2. Traveling wave solutions to the
FKPP equation (6) at different time t (left)
and t′ > t (right) as a function of x. (Figure
by courtesy of R. Enberg)

There are two facts about this traveling wave solution, both of which are significantly
relevant to the saturation physics:

Fact I : For a traveling wave solution, one can define the position of a ”wave front”
x(t) = v(t)t, irrespective of the details of the nonlinear effects.

Fact II: At late time, the ”shape” of a traveling wave is preserved during its propagation,
and the solution becomes only a function of x − vt.

Let us translate these facts into the language of saturation physics. Fact I is one of the
most important facts for the saturation physics because the position of the wave front is
nothing but the saturation scale x(t) ∼ ln Q2

s(Y ). By definition, the position of the wave
front locates at the transition point from the unstable to stable regimes. On the other
hand, the saturation scale is defined as the boundary between saturated (stable) and non-
saturated (unstable) regimes. Therefore it is quite natural that the position of the wave
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front corresponds to the saturation scale. What is more important is that the saturation
scale can be determined irrespective of the nonlinear effects. This is again consistent with
our knowledge that the energy dependence of the saturation scale can be determined by
the linear BFKL evolution.

Fact II itself implies that the solution u(t, x) which is originally a function of position
x and time t will show a scaling that it depends only on a specific combination of two
variables x − x(t). Within the saturation language, one finds that this phenomenon
corresponds to the geometric scaling where the scattering amplitude becomes a function
of a particular combination of transverse momentum k⊥ and some function of x, namely,
the scaling variable is x − x(t) ∼ ln2 k2

⊥/Q2
s(Y ) and thus NY (k) = f(k2

⊥/Q2
s(Y )). This

scaling holds very well in a deeply saturated regime, where the profile of the solution
does not change. This again implies the universality of the saturation regime. On the
other hand, as one departs from the saturation regime (or the wave front) toward dilute
(unstable) regime, the effect of saturation becomes weaker and weaker and eventually
disappears, and the solution ceases to show the scaling. Still, one can approximately
see the scaling if one stays close to (but outside of) the saturation boundary. One can
estimate the upper limit of the transverse momentum squared below which the solution
will show the scaling. Namely, the scaling is approximately seen in the following window
(refered to as the extended scaling regime) [7]:

Q2
s(x) <∼ Q2 <∼ Q4

s(x)/Λ2
QCD. (7)

This upper limit is roughly consistent with the experimental data at HERA [11]. The
geometric scaling is indeed observed up to Q2 ∼ 100GeV2 while the saturation scale at
HERA is estimated as about Q2

s ∼ 1GeV2 at x ∼ 10−4.
Hence we recognized that there is a qualitatively different regime in between the CGC

and dilute regimes. The theoretical status at this point for a proton as seen in DIS is
summarized in Fig. 3.

N
o
n
-p
e
rt
u
rb
a
ti
v
e
(R
e
g
g
e
)

1/x 
in log scale

Q2  in log scale

Parton gas

Extended 
scaling 
regime

CGC

H
ig

h
e

r
 e

n
e

r
g

ie
s

 �� ��

Fine transverse resolution ����ΛQCD
2

QS
2(x)

QS
4(x)/ΛQCD

2 Figure 3. ”Phase diagram” of a
proton as seen in deep inelastic
scattering.

3. Recent progress in phenomenology

Our understanding of the CGC has been deepened partly (in fact, largely) due to the
experimental results at HERA and RHIC. Below I briefly explain some of the attempts
to describe/understand the experimental data from the viewpoint of the CGC.
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3.1. DIS at HERA
DIS at small x is the cleanest process for measuring saturation effects in gluon distribu-

tion of the proton. Starting from the pioneering work by Golec-Biernat and Wüsthoff [15],
there are several attempts to describe the HERA DIS data [1] in the context of gluon sat-
uration. Here let me briefly explain the ”CGC fit” [16] which is one of the most successful
fits of the small x data based on QCD. The CGC fit is constructed so as to contain two
approximate solutions to the BK equation, which are valid in the saturation and BFKL
regimes, respectively. In particular, the solution in the linear BFKL regime shows the geo-
metric scaling and its (small) violation. With only three parameters, the CGC fit provides
a very nice fit for the F2 structure function with x < 10−2 and in 0.045 < Q2 < 45 GeV2.
From the fit, the saturation scale was determined as

Q2
s(x) = (1 GeV)2(x0/x)λ, with x0 = 0.26 × 10−4, λ = 0.25. (8)

Meanwhile, it turned out that this fit works reasonably well even for other observables
such as F diff

2 , FL and the vector meson production [17,18]. Precise determination of
the saturation scale is also important for the analysis involving nuclei because one can
determine the saturation scale for the nucleus by using the result for a proton.

3.2. Au-Au collisions at RHIC
The CGC provides the initial condition for the heavy ion collision. Information of the

initial state could still be seen in the final observed data. It should be noticed that most
of the produced particles have small momenta less than 1 GeV which is of the same order
as Qs in RHIC. This observation suggests that effects of saturation may be visible in bulk
quantities such as the multiplicity. Indeed, the CGC results [19,20] for the pseudo-rapidity
and centrality dependences of the multiplicity are in good agreement with the data.

3.3. Deuteron-Au collisions at RHIC
Going to forward rapidities in a p-A collision corresponds to probing a nuclear wave-

function at smaller x, which should exhibit saturation with decreasing x. Thus, this is
one of the best places to search for the CGC or the effects of quantum evolution [21]. For
example, such effects should be measured in the nuclear modification factor, and this was
indeed done by the BRAHMS experiment in the deuteron-Au collisions at RHIC [22]. The
experimental data show enhancement of the ratio at mid-rapidity (the Cronin effect) and
suppression at forward rapidities. Such global behavior is qualitatively consistent with the
predictions made by the CGC [23,24]. After the data was announced, many publications
followed to confirm that this phenomena are indeed due to the saturation and CGC (for
a review, see Ref. [25]). For instance, detailed analytical investigation of the ratio1 was
performed by Iancu, Triantafyllopoulos, and myself [26] and it has been clarified that the
Cronin effect is due to multiple Glauber-Mueller scattering and re-distribution of gluons,
both of which are properly described by the McLerran-Venugopalan model (classical sat-
uration model without evolution), and that the high p⊥ suppression is induced by the
mismatch of the evolution speed between the proton (deuteron) and the nucleus. The
nucleus is closer to saturation and thus evolves slower than the proton. Quantitative
results are also available. Kharzeev, Kovchegov, and Tuchin have computed the nuclear

1More precisely, a ratio of the nuclear wavefunction to the proton wavefunction scaled up by A1/3, which
shows very similar behaviors as the nuclear modification factor.
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modification factor within the framework of the CGC [27], and found rather good agree-
ment with the BRAHMS data. Very recently, there was an important progress: Dumitru,
Hayashigaki, and Jalilian-Marian recognized that including the DGLAP evolution in the
projectile side significantly improves the transverse spectra of the produced particles [28].
Up to now, their result seems to be the best one for this observable. Also important is
the fact that the averaged value of xA (the fraction of gluon momentum coming from the
target nucleus) is small enough 〈xA〉 ∼ 10−3 for the 2 → 1 kinematics, which is highly
contrasted with the results 〈xA〉 ∼ 10−2 for the standard 2 → 2 kinematics with the
leading twist shadowing [29]. Therefore, our framework gives a consistent description of
the deuteron-Au scattering.

Lastly, various observables have been computed and found to show suppression due to
saturation. They include dileptons and photon productions [30] for the electro-magnetic
probes, qq̄ or heavy meson productions [31], jet azimuthal correlations [32], etc. Note that
EM probes are important in that they are less ambiguous because the process does not
contain fragmentation functions.

So far, we have understood many things within the framework of the CGC, but in fact
there are several other approaches which are aimed at describing the Cronin effect and
high pt suppression. Thus, in order to be convinced enough, it is necessary to perform
more detailed investigation in the future.

After these phenomenological analyses, we can add numbers on the axes of ”phase
diagram” in Fig. 3. The results are summarized in Fig. 4, where the diagrams for a proton
and a nucleus are shown separately because respective saturation scales are different. Since
the saturation scale (squared) for Au is larger than that for a proton by a factor A1/3 ∼ 6,
the saturation regime for Au is bigger. Kinematically allowed regions for HERA and
RHIC are also specified on the figure. Clearly, HERA and forward rapidities at RHIC
have large overlapping with saturation regime, while the mid-rapidity at RHIC does not.
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Figure 4. ”Phase diagram”
with numbers determined from
the phenomenological analyses.
Vertical and horizontal axes are
x and Q2 (or k2

⊥ of gluons for a
nucleus) in log scale. Kinemati-
cally allowed regions are shown
for HERA, RHIC and LHC ex-
periments.

3.4. CGC at the LHC
Now it is straightforward to draw lines for the LHC on the same phase diagram (number

of nucleons for Pb is not so different from that for Au). As is seen in Fig. 4 (right),
kinematically allowed region for the LHC has significant overlapping with the saturation
regime even at mid-rapidity. More precisely, for the same transverse momentum, the
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saturation scale at the LHC is increased by a factor 3 than that of RHIC. Therefore,
the effects of saturation is expected to be more visible at the LHC. There are already
predictions for the multiplicities for pA and AA collisions [33] and the nuclear modification
factor for pA collision [27]. Predictions for other observables are also necessary before the
LHC starts to operate. In order to make realistic predictions, we will have to consider both
the initial-state (CGC) and final-state (energy loss) effects. Even at the RHIC energy,
the similar situation should be seen at forward rapidities in Au-Au collisions. Studying
this situation in RHIC will be very helpful to understand the future LHC experiments.

4. Recent progress in theory – Beyond the BK equation

Most recently, there is a growing acceptance that the BK equation is not sufficient to
correctly describe the high-energy limit of QCD. Since this was first discussed in detail by
Mueller and Shoshi [34], studies of the physics beyond the BK equation is becoming one
of the main subjects of the CGC or saturation physics. Research on this subject is still
rapidly developping with some (technical and conceptual) problems left unresolved, and it
is rather difficult (and even not appropriate) at this time to make a conclusive statement
(for references, see the citation list of Ref. [34]: there are 51 hits by now). Instead, I
would comment briefly on some general picture which we are aiming at.

Suppose that we have a complete description of the high-energy limit of QCD. It should
at least contain pomerons (2 reggeized gluon exchange, C even), odderons (3 reggeized
gluon exchange, C odd), and reggeons (quark antiquark exchange, etc) as the exchanges
between a projectile and a target, and correct interaction among them. On the other hand,
the BK equation describes only (multiple exchanges of) pomerons, and pomeron merging
as the interaction (from the target point of view). This implies that the BK equation is
not symmetric under the exchange between a target and a projectile. In order to obtain
a symmetric picture which also contains other exchanges, we have to go beyond the BK
equation. This activity has two different aspects: one is to consider n-point correlation
functions (n > 2), and the other is to find correct interactions among the above-mentioned
exchanges. Note that the evolution of the CGC can be formulated as a stochastic process
governed by a Hamiltonian. Within this context, the pomeron can be described as a kind
of two particle collective state (a two point function) of this Hamiltonian. Recently, it
has been established that the odderon exchange also appears as the collective state of
this Hamiltonian, but is given by a ”three particle” state (a three point function) which
is odd under charge conjugation [35]. However, this Hamiltonian itself has to be modified
because it does not contain the pomeron splitting. Inclusion of pomeron splitting to the
evolution equation has been discussed by several people. What I can say at present is
that we are certainly approaching towards the complete description of the high-energy
limit of QCD.
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