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We argue that isotropization and, consequently, thermalization of the system of glu-
ons and quarks produced in an ultrarelativistic heavy ion collision does not follow from
Feynman diagram analysis to all orders in the coupling constant. We conclude that the ap-
parent thermalization of quarks and gluons, leading to success of Bjorken hydrodynamics
in describing heavy ion collisions at RHIC, can only be attributed to the non-perturbative
QCD effects not captured by Feynman diagrams.

1. INTRODUCTION: ISOTROPIZATION VERSUS FREE STREAMING

The results presented here are based on the work done in [1,2].
Similar to the original Bjorken hydrodynamics approach [3], let us consider a cen-

tral high energy collision of two very large nuclei. For simplicity, here we will dis-
cuss the case where the distribution of particles is independent of space-time rapidity
η = (1/2) ln(x+/x−), where x± = (t ± z)/

√
2. Since the nuclei are very large the trans-

verse coordinate dependence can also be neglected for most physical quantities, leaving
only the dependence on the proper time τ =

√
2x+x−. For this geometry, one can show

that the most general energy-momentum tensor can be written as (at z = 0) [1]

T μν =

⎛
⎜⎜⎜⎝

ε(τ) 0 0 0
0 p(τ) 0 0
0 0 p(τ) 0
0 0 0 p3(τ)

⎞
⎟⎟⎟⎠ , (1)

where z-axis is taken along the beam direction, and x, y-axes are in the transverse direc-
tion. Applying the conservation of energy-momentum tensor condition

∂μT μν = 0 (2)

to the energy-momentum tensor that gives Eq. (1) at z = 0 we obtain

dε

dτ
= −ε + p3

τ
. (3)

There are two interesting cases one can consider:
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(i) if p3 = 0 longitudinal pressure vanishes and, due to Eq. (3), we get

ε ∼ 1

τ
, (4)

such that the total energy E ≈ ε τ = const. This case is known as free streaming:
the system expands freely without loosing any energy.

(ii) if p3 = p the energy-momentum tensor in Eq. (1) becomes isotropic. This is the
case of ideal Bjorken hydrodynamics [3]. Eq. (3) with p3 = p was derived in [3]. If
combined with the ideal gas equation of state, ε = 3 p, it gives

ε ∼ 1

τ 4/3
(5)

or, for other equations of state,

ε ∼ 1

τ 1+Δ
with Δ > 0. (6)

Eq. (3) demonstrates that changes in the total energy E ≈ ε τ (or, equivalently, de-
viations from ε ∼ 1/τ scaling) are due to work done by the longitudinal pressure p3.
The classical initial conditions in the Color Glass Condensate approach [4] yield the free
streaming final state with p3 = 0. A thermalized quark-gluon plasma is characterized by
non-zero p3, leading to the energy density scaling as shown in Eq. (6). Therefore, below
we will understand isotropization, which is the necessary condition for thermalization, as
dynamical generation of non-zero longitudinal pressure p3 �= 0, or, equivalently, deviations
from the scaling of Eq. (4) leading to the scaling of Eq. (6).

2. FORMAL ARGUMENT

An extensive search of the diagrams which would bring in the desired deviations from
the scaling of Eq. (4) carried out by the author did not yield any positive results: while
many diagrams have contributions to ε scaling as Eq. (6), such terms are always subleading
additive corrections to the leading (at late times) terms scaling as Eq. (4). In fact one can
construct an argument [1] demonstrating that the leading contribution to energy density
from any-order diagrams scales as ε ∼ 1/τ . The argument is presented below.

We begin by considering a gluon field generated by an arbitrary Feynman diagram [1],
illustrated in Fig. 1. In ∂μAμ = 0 covariant gauge it can be written as

Aa
μ(x) = −i

∫ d4k

(2π)4

e−ik·x

k2 + iεk0
Ja

μ(k), (7)

where the function Ja
μ(k) denotes the rest of the diagram in Fig. 1 (the truncated part),

which depends on the momenta of other outgoing gluons as well. Indeed gluon field can
be defined as a simple function only in the classical case: the “field” in Eq. (7) should
be thought of as a Feynman diagram in Fig. 1 with one of the outgoing gluon lines being
off mass-shell, i.e., a generalization of the classical field which we will need in calculating
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Figure 1. Gluon “field” generated by an arbitrary-order diagram (see text).

energy density [1]. (The expression in Eq. (7) can also be thought of as an operator
equation.)

Substituting Eq. (7) into the expression for energy-momentum tensor

T μν =
〈
−F a μρ F a ν

ρ +
1

4
gμν (F a

ρσ)2
〉

, (8)

averaging over the nuclear wave functions and employing the symmetries of the collision
of two identical nuclei we obtain the energy density due to the gluon field [1]

ε =
∫

d4k d4k′

(2π)8

e−ik·x−ik′·x

(k2 + iεk0)(k′2 + iεk′
0)

⎧⎨
⎩1

2

⎡
⎣
(

τ

x+

)2

k+k′
+ − k2

⎤
⎦f1(k

2, k′2, k · k′, kT ) + . . .

⎫⎬
⎭(9)

where f1(k
2, k′2, k · k′, kT ) is some unknown function (a “form-factor”) and the ellipsis

indicate addition of two more similar terms with different “form-factors” f2 and f3.
Rewriting each “form-factor” as

fi(k
2, k′2, k · k′, kT ) = fi(k

2 = 0, k′2 = 0, k · k′ = 0, kT )+

+[fi(k
2, k′2, k · k′, kT ) − fi(k

2 = 0, k′2 = 0, k · k′ = 0, kT )] (10)

and using the fact that the square of truncated part of the diagram gives a cross section

dN

d2k dy
=

1

2(2π)3

〈〈
Ja ρ(k) Ja

ρ (−k)
〉〉∣∣∣∣

k2=0
(11)

we conclude that, keeping only the first term on the right hand side of Eq. (10) for all
“form-factors” in Eq. (9) yields

ε =
π

2

∫
d2k

dN

d2k dη d2b
k2

T

{
[J1(kT τ)]2 + [J0(kT τ)]2

}
≈ 1

τ

∫
d2k

dN

d2k dη d2b
kT , (12)

where the last equality is valid for late proper times τ . Since, as was shown in [1], each
factor of k2, k′2 or k · k′ gives a factor of 1/τ , the terms in the square brackets of Eq. (10)
give a subleading (compared to Eq. (12)) contribution to energy density at late times
τ and can be safely neglected. We have shown that any diagram and/or any set of
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diagrams contributing to gluon production cross section lead to energy density scaling as
in Eq. (4), i.e., that isotropization and, consequently, thermalization do not take place in
perturbation theory analysis of the collisions.

The main assumption of the argument presented above is the existence of multiplicity
of produced gluons dN/d2k dy, which is the essential assumption of QCD perturbation
theory. This is what makes our argument perturbative.

3. PHYSICAL ARGUMENT

Now let us present a physical argument demonstrating the origin of the power of 4/3
in Eq. (5) and explaining why it is impossible to achieve in perturbation theory [2]. Let
us assume that thermalization does take place at some time τth. If a gauge invariant time
τth exists, we can put the QCD coupling constant g = 0 for all times τ > τth. Bjorken
hydrodynamics in the g = 0 limit is governed by the ideal gas equation of state ε = 3 p,
which leads to the energy density scaling as shown in Eq. (5). (For small but non-zero
g, Eq. (5) would get an o(g2) negative correction to 4/3: the expansion in g would still
be around the power of 4/3.) Due to Eq. (3), the scaling of Eq. (5) in the g = 0 limit
of Bjorken hydrodynamics means that p3 �= 0 and the gas of non-interacting particles is
doing work in the longitudinal direction! What causes such a behavior of the system?
The problem lies in the ideal gas equation of state, ε = 3 p, which assumes that the ideal
gas is in contact with some external thermal bath. Such external thermal bath could be
a background field or a box containing the gas: the ideal gas of non-interacting particles
stays thermal through the interactions between the gas particles and the thermal bath.
This is the only interaction allowed and it is responsible for the work done by the non-
interacting gas. Since there is no such external thermal bath in heavy ion collisions, the
scaling of Eq. (5) is impossible to achieve at small coupling.

Without the external thermal bath the particles in the gas would be just free streaming,
giving the physically correct energy density scaling of Eq. (4). Of course, at a fixed time τ
hydro is not applicable in the g = 0 limit, since the mean free path of the particles would
exceed the longitudinal size of the system. However, if thermalization does happen, for any
fixed arbitrary small g, if we wait long enough hydrodynamics should become applicable,
leading to the scaling arbitrary close to that of Eq. (5) and doing work in the longitudinal
direction which would be mostly due to contact with the non-existing external thermal
bath. Therefore, we arrive at a contradiction, demonstrating that hydrodynamics is not
achievable at small coupling. At large coupling, non-perturbative effects may mimic the
external thermal bath, possibly leading to energy density scaling shown in Eq. (6).
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