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This is a review of the parton cascade approach and its implications to parton coales-
cence at RHIC.

1. Introduction

Recent data from Au + Au reactions at
√

sNN = 130 and 200 GeV from RHIC show
striking difference between baryons and mesons in the intermediate transverse momentum
region 2 < p⊥ < 5 GeV. First, elliptic flow scales with constituent quark number[1–5].
The flow per constituent quark as a function of transverse momentum per constituent
quark, vhadron

2 (pT /n)/n (n = 2 for mesons, 3 for baryons), is a universal function for all
hadron species (within experimental uncertainties). Second, nuclear suppression is weaker
(RAA is larger) for baryons than for mesons[1,2,6,7,4,8,9]. The most promising mechanism
proposed to explain both phenomena is parton coalescence[10–17].

In the coalescence model, mesons form from a quark and antiquark, while baryons from
three quarks or three antiquarks (contributions from higher Fock states are small [18]).
Most versions of the model are based on variants of the simple “coalescence formula” [19,
20,13,14,16]

dNhad(�p)

d3p
=gM

∫ ∏
i

[
d3xid

3pifi(�pi, �xi)
]

Whad({Δ�xij}, {Δ�pij}) δ3(�p−∑
i

�pi) (1)

that gives the hadron spectra in terms of the constituent phasespace distributions fi

on a 3D spacetime hypersurface and the Wigner-transform of hadron wave functions
W . (Arbitrary 3D hypersurfaces[19,20] and quark correlations[21] are straightforward to
accommodate.) This simple approach can reproduce the particle spectra at RHIC quite
well, with coalescence hadronization from a thermalized quark-antiquark plasma[13,14]
and an additive fragmentation contribution of quenched high-pT jets[22]. The scaling of
elliptic flow with constituent quark number was also explained in this framework[15,16].

Nevertheless, several important questions are still open. At low pT , the coalescence
formula violates[15,16] unitarity. The yield in a given coalescence channel scales quadrat-

1



2 Denes Molnar

ically/cubically with constituent number, moreover, the same constituent contributes to
several channels (including fragmentation in certain schemes). Energy conservation is
only approximate because of the on-shell treatment and neglect of binding energies. Also,
though the final entropy is comparable to the initial one (due to hadron decays) [23], it
is problematic that entropy does decrease temporarily during the coalescence process.

Most importantly, the simple parametrizations assumed for the quark phase space dis-
tributions are inconsistent with dynamical models, such as parton cascades or hydro-
dynamics. Spatial inhomogeneities and dynamical phasespace correlations distort coa-
lescence predictions in a crucial way. In particular, the observed quark number scaling
becomes highly nontrivial [24], and a large baryon/meson ratio enhancement is difficult
to achieve[17].

Below I review and illustrate the difficulties, using one of the main dynamical ap-
proaches, covariant parton transport theory.

2. Covariant parton transport theory

Covariant parton transport theory is the incoherent, particle (short-wavelength) limit of
quantum-chromodynamics. Its main advantage is that it is applicable out of equilibrium
and models freezeout self-consistently. However, it cannot describe phase transitions
(without coupling to classical fields).

One of the simplest but nonlinear forms of Lorentz-covariant Boltzmann transport
theory involves on-shell phase space densities {fi(x, �p)} that evolve with elastic 2 → 2
[25–29] and inelastic 2 → 2 [30] rates as

pμ
1∂μf1,i = Si(x, �p1)+

1

16π2

∑
jk�

∫
2

∫
3

∫
4

(
f3,kf4,�

gigj

gkg�
− f1,if2,j

) ∣∣∣M̄ij→k�
12→34

∣∣∣2 δ4(p1+p2−p3−p4) .(2)

|M̄|2 is the polarization averaged scattering matrix element squared, the integrals are
shorthands for

∫
a
≡ ∫

d3pa/(2Ea), gi is the number of internal degrees of freedom for species

i, while fa,i ≡ fi(x, �pa). The source functions {Si(x, �p)} specify the initial conditions.
Eq. (2) could in principle be extended for bosons and/or for inelastic processes, such

as gg ↔ ggg [31,32]. However, with the new nonlinearities these extensions introduce, it
is very challenging to maintain Lorentz covariance numerically at opacities expected at
RHIC. Off-shell variants of parton transport also exist, such as the VNI/b model[33].

Based on the local mean free path λ(x, s) ≡ 1/[n(x)σ(s)], the theory naturally in-
terpolates between ideal hydrodynamics (λ → 0) and free streaming (λ → ∞). The
most relevant quantity that characterizes the whole evolution is the transport opacity
χ ≡ ∫

dzρ(z)σtr [28], which is the average number of collisions per parton multiplied by
the ratio of the transport and total cross sections (the efficiency of momentum transfer
in a single collision). In a near-equilibrium situation, these parameters can be related to
transport coefficients, such as the shear viscosity or diffusion constants.

Transport theory provides important information about the properties of the partonic
medium created at RHIC. The large elliptic flow observed[34–36] indicates a strongly-
interacting, opaque parton system[28], with dNg/dη(b = 0) × σgg ≈ 1000 × 45 mb, about
15 times above the perturbative estimate (see Fig. 1a). These conditions are still different
from an ideal fluid because dissipation reduces elliptic flow by 30 − 50% relative to the
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Figure 1. Results for Au + Au at
√

s = 200A GeV at RHIC with b = 8 fm from
MPC[40]. a) Transport opacity dependence of elliptic flow as a function of pT from
covariant transport theory (from [28]); b) comparison of elliptic flow as a function of pT

from covariant transport theory and ideal hydrodynamics (from [29]).

ideal fluid limit [29] (Fig. 1b). At such high opacities, the shear viscosity of the parton
plasma η ∼ sλT/5 [37] (estimated from kinetic theory) is indeed very small, close to
the conjectured lower bound ηmin = s/(4π) [38] (s is the entropy density). However,
the small viscosity is compensated by large gradients in heavy-ion collisions, resulting in
significant dissipative effects. Estimates based on viscous (Navier-Stokes) hydrodynamics
also support this conclusion[39].

Though even the large opacities at RHIC are insufficient to equilibrate charm, a large
charm quark elliptic flow is still expected above pT ∼ 2 − 3 GeV (Fig. 2) from several
studies (covariant transport predictions from MPC[30,40], reinforced by calculations from
AMPT[41] and also a Fokker-Planck approach[42]). It is very exciting that preliminary
indirect data from RHIC do indicate a nonzero charm elliptic flow[43,44]. These data are
on the elliptic flow of electrons from D meson decays D(∗) → Kνe, which based on model
studies follows closely the D meson elliptic flow[45,41] (see Fig. 2b).

At high pT covariant transport shares a lot of similarity with parton energy loss mod-
els[22], except that 2 → 2 transport gives incoherent, elastic energy loss. However, at the
high opacities at RHIC the dynamics is much richer. Not only energy loss, but signifi-
cant energy gain is also possible in multiple collisions[46]. This “plasma push” process, a
shadow of near-hydrodynamic behavior at low pT , plays a role even at pT ∼ 10 GeV, and
is the reason why elliptic flow from the transport decreases very slowly at high pT .

3. Dynamical effects and elliptic flow scaling from coalescence

To illustrate the effect of the dynamics on elliptic flow scaling from coalescence, it
is useful to first ignore variations of phasespace distributions on length and momentum
scales corresponding to a typical hadron (∼ 1 fm and ∼ 200 MeV). In this case[24],
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Figure 2. a) Top panel: parton species dependence of elliptic flow in Au+Au at
√

sNN =
200 GeV at RHIC as a function of pT , for b = 8 fm and ≈ 7 times perturbative opacities,
from the covariant MPC model (from [30]); bottom panel: preliminary non-photonic
electron v2(pT ) data from RHIC (from [43]). b) Top panels: parton v2(pT ) for minimum-
bias Au + Au collisions at

√
sNN = 200 GeV from the AMPT model; bottom panels:

comparison of D meson v2 and electron v2 from D decays (from [41]).

W ∼ δ3(Δ�xij)δ
3(Δ�pij) and the phasespace distributions of mesons and baryons from

coalescence (αβ → M , αβγ → B) are

fB(x, �p) =
(2π)3gB

gα gβ gγ
fα(x, �p/3) fβ(x, �p/3)fγ(x, �p/3)

fM (x, �p) =
(2π)6gM

gα gβ

fα(x, �p/2) fβ(x, �p/2) . (3)

g is the degeneracy of the particle (spin and color), and I considered constituent quarks
of (roughly) equal mass, which share the total hadron momentum (roughly) equally. (In
hadrons that also contain a heavy quark, e.g., D mesons or the Λc, the heavy quark carries
most of the momentum [16].)

Assume for simplicity that all quarks have identical phase space distributions

fq(x, �pT , y = 0) ≡ nq(x, pT )

[
1 +

∞∑
n=1

2vn,q(x, pT ) cos(nφ)

]
, (4)

where nq is the local density of quarks with transverse momentum (magnitude) pT . For
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small local anisotropies

|v2,q| 	 1 , |vk,qvl,q| 	 |v2,q| , (5)

the usual assumption to obtain elliptic flow scaling, the hadron elliptic flows from (3) are

v2,M(pT ) ≈ 2 〈n2
q(x, pT /2) v2,q(x, pT /2)〉x

〈n2
q(x, pT /2)〉x

v2,B(pT ) ≈ 3 〈n3
q(x, pT /3) v2,q(x, pT /3)〉x

〈n3
q(x, pT /3)〉x (6)

with 〈A(x)〉x ≡ ∫
d3xA(x) (spatial average). Though each small spatial region with its

own local quark elliptic flow contributes a local hadron elliptic flow that scales with quark
number, v2,had(x, pT ) ≈ n v2,q(x, pT /n), quark number scaling does not follow in general
for the measured (spatially averaged) elliptic flow, i.e., v2,had(pT ) �= n v2,q(pT /n). This is
because constituent phase space densities appear nonlinearly, raised to second and third
power.

Constituent quark scaling arises only for special classes of quark phase space distribu-
tions. Two classes where the spatial dependence in (3) cancels out trivially are i) when
the local density is spatially uniform n(x, pT ) = n(pT ) (as assumed in [15]); and ii) when
the local flow anisotropy is spatially uniform v2(x, pT ) = v2(pT ) (the assumption in [14]).

Unfortunately, neither of the two cases is realistic. Dynamical models yield spatially
nonuniform local densities and nonuniform flow anisotropies. Local density variations have
been studied in connection with the pion interferometry puzzle from hydrodynamics[47]
and several transport models[48–50] (Fig. 3a is an example from covariant parton trans-
port). Local flow anisotropies are also spatially nonuniform as can be seen in Fig. 3b that
shows (momentum) azimuthal angle φ distributions at midrapidity for 1 < pT < 2 GeV,
for Au + Au at top RHIC energy, b = 8 fm, averaged over four wedges in the transverse
coordinate plane ϕx ∈ [kπ/8, (k +1)π/8], with k = 0, 1, 2, 3 [24]. Clearly, partons emitted
from in-plane regions move predominantly in-plane and, therefore, have positive elliptic
flow v2 > 0; while partons coming from out-of-plane regions move in out-of-plane direction
and have negative v2 < 0. This is very similar to the hydrodynamic expectation[51] based
on radially boosted fireballs.

Fig. 3b also demonstrates that the condition of small local anisotropies (5), which
is necessary for general quark number scaling, is not satisfied either. Instead of small
harmonic modulations over a uniform background, the distributions are strongly peaked
because high-pT particles can only escape from a surface layer of the reaction region.
In this case, local anisotropies from coalescence follow a unique power-law scaling [24]
|vhad(pT )| � |v2,q(pT /n)|1/n, instead of the linear one derived in [15].

Therefore, quark number scaling of elliptic flow requires a highly nontrivial fortuitous
interplay between variations in local parton density and nonlinear couplings between large
local flow coefficients. Several classes of phase space distributions have been explored
recently [52,53] and solutions have been found that scale approximately.

One particularly simple example[53], with large local flow anisotropies, is when N par-
tons move along the φ = 0 axis and (1−a)N partons move along φ = π/2 (a 	 1). If the
local volumes for both components are identical, the hadron yields are Nhad ∝ V (N/V )n+
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Figure 3. Results from MPC[40] for Au + Au at
√

sNN = 200 GeV with b = 8 fm. a)
Transverse positions of partons at freezeout as a function of pT , for final rapidities |y| < 2
(scatter plot). The ellipses guide the eye. b) φ distributions at midrapidity for 1 < pT < 2
GeV, averaged over four wedges in the transverse plane ϕx ∈ [kπ/8, (k + 1)π/8], k = 0...3
(from [24]).

V ((1−a)N/V )n, and the elliptic flows do scale v2 = [(N/V )n−((1−a)N/V )n]/[(N/V )n+
((1 − a)N/V )n] ≈ na/2. However, it is easy to show that scaling crucially depends on
the assumption of identical volumes. Different local volumes, V and V ′, give hadron
yields Nhad ∝ V (N/V )n + V ′((1 − a)N/V ′)n and elliptic flows that do not scale, v2 =
[(V/V ′)n−1−(1−a)n]/[(V/V ′)n−1+(1−a)n] ≈ [(V/V ′)n−1−1+na)]/[(V/V ′)n−1+1+na)].
This underscores the importance of going beyond simple parameterizations and using real
dynamical models to study parton coalescence in heavy-ion collisions.

It is important to realize that quark number scaling from coalescence necessitates
nonequilibrium dynamics[24]. For thermal constituent distributions, coalescence reduces
to statistical hadronization and, therefore, momentum anisotropies in that case can only
depend on particle mass, and not quark number. This is so even for nonequilibrium quark
distributions that are of the form f(x, �p) = g(pμu

μ(x), x). Therefore, besides the break-
down of hydrodynamic behavior, quark number scaling indicates a marked departure from
pure “flow-like” space-momentum correlations as well.

4. Dynamical coalescence approach

One way to study realistic dynamical effects is to combine nonequilibrium parton trans-
port theory and coalescence [17]. Such an approach requires overcoming the limitations of
(1) and proper book-keeping to ensure that each parton participates in one hadronization
channel (no multiple counting).

The simple coalescence formula (1) relies on the assumption that interactions be-
tween quarks that are not in the same hadron cease suddenly on some 3D hypersur-
face. However, self-consistent freezeout from transport approaches gives diffuse 4D freeze-
out distributions[48–50] that cannot be well approximated with a hypersurface. The
coalescence formalism was extended to such a case by Gyulassy, Frankel and Remler
(GFR) in [54] (for weakly-bound states). Their result is the same as (1), except that
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the weight W is evaluated using the freezeout coordinates (t, �x) of constituents. When
taking Δ�x, the earlier particle needs to be propagated to the time of the later one, e.g.,
Δ�x12 = �x1 − �x2 + (t2 − t1)�v1 if t1 < t2. The origin of this correction is that a weak bound
state survives only if none of its constituents have any further interactions. For baryons,
the generalization involves propagation to the latest of the three freezeout times.

For proper book-keeping, it is common in transport models[55] to utilize box Wigner
functions W =

∏
i,j Θ(xm−|Δ�xij |)Θ(pm−|Δ�pij |). This way (1) has a simple interpretation:

if W = 1 (and the quantum numbers match) the hadron is formed, otherwise it is not
(W = 0). If several coalescence final states exist for a given constituent, one is chosen
randomly. Partons that do not find a coalescence partner would propagate “freely” and
are therefore fragmented independently.

Fig. 4 shows pion and proton elliptic flow at RHIC for Au + Au at
√

sNN = 200 GeV
with b = 8 fm and ≈ 7 times perturbative opacities (σgg→gg = 10 mb), from the dynamical
coalescence approach[17] based on the covariant transport model MPC[40]. The elliptic
flow of direct pions and protons from coalescence (left panel) is somewhat smaller than
the parton flow scaled by constituent quark number. The difference is due to genuine
dynamical effects that are much larger than few-percent corrections nonlinear in v2 or
those due to higher-order flow anisotropies[15]. Nevertheless, in view of the discussion in
the previous Section, it is quite remarkable that the end result is only a modest ∼ 20%
and ∼ 30% flow reduction for mesons and baryons.

On the other hand, fragmentation contributions sharply reduce the hadron v2 as shown
in the right panel in Fig. 4. Unlike the flow amplification from coalescence[15], fragmen-
tation smears out the anisotropy because hadrons from the parton shower are not fully
collinear (nonzero jet width). Because only a smaller fraction of parton finds a coalescence
partner, a large fraction fragments, including essentially all partons above pT > 2.5 GeV,
as can be seen in Fig. 5a. Coalescence does become more and more important at low pT

but it involves only about one in every three partons.
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Figure 4. Quark number scaled elliptic flow from MPC[40] as a function of pT for pions
(open squares) and protons (filled circles) in Au + Au at

√
s = 200A GeV at RHIC with

b = 8 and σgg = 10 mb, with hadronization via combined coalescence and fragmentation
(right), and for primary hadrons (without decays) from coalescence (left). The constituent
v2(pT ) is also shown (solid lines). Taken from [17].
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Figure 5. Results from MPC for Au + Au at
√

s = 200A GeV at RHIC with b = 8 fm for
σgg = 3 mb (dotted) and 10 mb (solid), or immediate freezeout at τ = 0.1 fm/c (dashed-
dotted line). Taken from [17]. a) Fraction of partons that fragment independently as a
function of pT ; b) pion and proton enhancement from coalescence as a function of p⊥.

Despite the large fragmentation component, pion and proton v2 still scale approximately
relative to each other - up to small differences of ∼ 10%, perhaps up to 30%, which could
be tested against high-precision Run-4 data from RHIC (better theory accuracy in the
pT /n > 1 − 1.5 GeV region is certainly desirable). However, quantitative interpretation
of the data becomes more complicated because the scaled hadron flows underpredict the
real parton v2(pT ) by factor of 2 or more.

Dynamical effects on the baryon/meson ratio are much more striking as can be seen in
Fig. 5b. Here the yield enhancement from coalescence is characterized by Rcoal, the ratio
of the final spectra with hadronization via combined coalescence and fragmentation to
that with hadronization via fragmentation only. Parton coalescence enhances both pion
and proton yields, and hence RAA, by as much as a factor of three in the “coalescence
window” [11,15] 1.5 < pT < 4.5 GeV. The additional hadron yield comes dominantly
from partons with 0.5 < pT < 2 GeV (see Fig. 5a). The enhancement, however, is
about the same for both protons and pions, and hence p/π stays close to the value in
p + p collisions. Even for a (rather unrealistic) scenario with immediate freezeout on the
formation τ = 0.1fm/c hypersurface, which results in very high parton densities, the p/π
ratio is enhanced relative to p+ p only 1.5−1.7 times, much less than the factor ≈ 3 seen
at RHIC at this centrality[6].

5. Conclusions

Parton coalescence is a promising approach to explain the striking baryon-meson differ-
ence in the Au + Au data at intermediate 2 < pT < 5 GeV from RHIC. Studies based on
simple parameterizations are quite successful but are inconsistent with dynamical models.
A dynamical coalescence approach based on parton transport theory does confirm that
coalescence is an important hadronization channel at RHIC. However, the dynamics sig-
nificantly affects elliptic flow scaling and baryon/meson ratios. Until a reliable approach
can successfully reproduce the data, “the jury is still out” regarding coalescence.

Clearly, further studies are needed. The 2 → 2 dynamics considered could be an
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oversimplification, or the formalism based on weakly-bound states may not apply well to
the QCD coalescence process. Long-range correlations could make coalescence nonlocal
in phase-space (unlike (1)), or help “optimally match” coalescence partners to maximize
the yields. Precise experimental data on deviations from quark number scaling, flavor
dependence of observables, and the transition to the pure fragmentation regime at high pT

will provide additional tests of coalescence models and further insights into the dynamics
at intermediate pT .
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