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ul. Hoża 69, PL - 00-681 Warsaw, Poland

Due to anisotropic momentum distribution the parton system produced at the early
stage of relativistic heavy-ion collisions is unstable with respect to the magnetic plasma
modes. The instabilities isotropize the system and thus speed up the process of its equi-
libration. The scenario of instabilities driven isotropization is reviewed.

1. Introduction

A matter created in relativistic heavy-ion collisions manifests a strongly collective hy-
drodynamic behaviour [1] which is particularly evident in studies of the so-called elliptic
flow [2]. Hydrodynamic description requires, strictly speaking, a local thermal equilibrium
and experimental data on the particle spectra and elliptic flow suggest, when analysed
within the hydrodynamic model, that an equilibration time of the parton1 system is as
short as 0.6 fm/c [1]. Such a fast equilibration can be explained assuming that the quark-
gluon plasma is strongly coupled [3]. However, a high-energy density at the collision early
stage, when the elliptic flow is generated, rather suggests that the plasma is then weakly
coupled due to the asymptotic freedom. Thus, the question arises whether the weakly
interacting plasma can be equilibrated within 1 fm/c.

Calculations, which assume that the parton-parton collisions are responsible for the
equilibration of the weakly interacting plasma, provide an equilibration time of at least
2.6 fm/c [4]. To thermalize the system one needs either a few hard collisions of the mo-
mentum transfer of order of the characteristic parton momentum2, which is denoted here
as T (as the temperature of equilibrium system), or many collisions of smaller transfer.
As discussed in e.g. [5], the inverse time scale of the collisional equilibration is of order
g4ln(1/g) T where g is the QCD coupling constant. However, the equilibration is speeded
up by instabilities generated in an anisotropic quark-gluon plasma [6–8], as growth of
the unstable modes is associated with the system’s isotropization. The characteristic in-
verse time of instability development is roughly of order gT for a sufficiently anisotropic

1The term ‘parton’ is used to denote quark or gluon.
2Although an anisotropic system is considered, the characteristic momentum in all directions is assumed
to be of the same order.
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momentum distribution [6,9–11]. Thus, the instabilities are much ‘faster’ than the colli-
sions in the weak coupling regime. Very recent numerical simulation [12] shows that the
instabilities driven isotropization is indeed very efficient.

The isotropization should be clearly distinguished from the equilibration. The instabili-
ties driven isotropization is a mean-field reversible phenomenon which is not accompanied
with the entropy production [6,12]. Therefore, the collisions, which are responsible for the
dissipation, are needed to reach the equilibrium state of maximal entropy. The instabilities
contribute to the equilibration indirectly, shaping the parton momenta distribution.

A large variety of instabilities of the electron-ion plasma which are known [13]. Those
caused by coordinate space inhomogeneities, in particular by the system’s boundaries, are
usually called hydrodynamic instabilities while those due to non-equilibrium momentum
distribution of plasma particles are called kinetic instabilities. Hardly anything is known
about hydrodynamic instabilities of the quark-gluon plasma, and I will not speculate about
them. The kinetic instabilities are initiated either by the charge or current fluctuations.
In the first case, the electric field (E) is longitudinal (E ‖ k, where k is the wave vector),
while in the second case the field is transverse (E ⊥ k). For this reason, the kinetic
instabilities caused by the charge fluctuations are usually called longitudinal while those
caused by the current fluctuations are called transverse. Since the electric field plays a
crucial role in the longitudinal mode generation, the longitudinal instabilities are also
called electric while the transverse ones are called magnetic. The magnetic mode known
as the filamentaion or Weibel instability appears to be relevant for the quark-gluon plasma
produced in relativistic heavy-ion collisions. In the following sections a whole scenario of
the instabilities driven isotropization is reviewed.

2. Seeds of the filamentation and its mechanism

Let me consider a non-equilibrium parton system which is homogeneous but the parton
momentum distribution is anisotropic. The system is on average locally colourless but
colour fluctuations are possible. Therefore, 〈jμ

a (x)〉 = 0 where jμ
a (x) is a local colour

four-current in the adjoint representation of SU(3) gauge group with μ = 0, 1, 2, 3 and
a = 1, 2, 3, . . . , 8 being the Lorentz and colour index, respectively; x = (t,x) denotes a
four-position in the coordinate space. As discussed in [14], the current correlator for a
classical system of non-interacting quarks and gluons is

Mμν
ab (t,x)

def
= 〈jμ

a (t1,x1)j
ν
b (t2,x2)〉 =

1

8
g2 δab

∫
d3p

(2π)3

pμpν

E2
p

f(p) δ(3)(x − vt) , (1)

where (t,x) ≡ (t2 − t1,x2 −x1) and the effective parton distribution function f(p) equals
n(p)+ n̄(p)+6ng(p) with n(p), n̄(p) and ng(p) giving the average colourless distribution
function of quarks Qij(x,p) = δijn(p), of antiquarks Q̄ij(x,p) = δijn̄(p), and of gluons
Gab(x,p) = δabng(p). We note that the distribution function of (anti-)quarks belongs to
the fundamental representation of the SU(3) gauge while that of gluons to the adjoint
representation. Therefore, i, j = 1, 2, 3 and a, b = 1, 2, ..., 8.

Due to the average space-time homogeneity, the correlation tensor (1) depends only on
the difference (t2 − t1,x2 − x1). The space-time points (t1,x1) and (t2,x2) are correlated
in the system of non-interacting particles if a particle travels from (t1,x1) to (t2,x2). For
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Figure 1. The mechanism of filamentation
instability, see text for the description.
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Figure 2. The growth rate of the
unstable mode as a function of the
wave vector k = (k⊥, 0, 0) for σ⊥ =
0.3 GeV and 4 values of the parameter
σ‖ which controls system’s anisotropy.
The figure is taken from [9].

this reason the delta δ(3)(x−vt) is present in the formula (1). The momentum integral of
the distribution function simply represents the summation over particles. The fluctuation
spectrum is found as a Fourier transform of the tensor (1) i.e.

Mμν
ab (ω,k) =

1

8
g2 δab

∫ d3p

(2π)3

pμpν

E2
p

f(p) 2πδ(ω − kv) . (2)

To compute the fluctuation spectrum, the parton momentum distribution has to be
specified. Such calculations with two forms of the anisotropic momentum distribution
are presented in [14]. Here I only qualitatively discuss Eqs. (1,2). I assume that the
momentum distribution is elongated in, say, the z direction. Then, Eqs. (1,2) clearly
show that the correlator Mzz is larger than Mxx or Myy . It is also clear that Mzz is the
largest when the wave vector k is along the direction of the momentum deficit. Then,
the delta function δ(ω − kv) does not much constrain the integral in Eq. (2). Since the
momentum distribution is elongated in the z direction, the current fluctuations are the
largest when the wave vector k is the x−y plane. Thus, I conclude that some fluctuations
in the anisotropic system are large, much larger than in the isotropic one. An anisotropic
system has a natural tendency to split into the current filaments parallel to the direction
of the momentum surplus. These currents are seeds of the filamentation instability.

Let me now explain in terms of elementary physics why the fluctuating currents, which
flow in the direction of the momentum surplus, can grow in time. To simplify the discus-
sion, which follows [14], I consider an electromagnetic anisotropic system. The form of
the fluctuating current is chosen to be

j(x) = j êz cos(kxx) , (3)

where êz is the unit vector in the z direction. As seen in Eq. (3), there are current
filaments of the thickness π/|kx| with the current flowing in the opposite directions in the
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neighbouring filaments. The magnetic field generated by the current (3) and the Lorentz
force acting on the partons, which fly along the z direction, are given as

B(x) =
j

kx
êy sin(kxx) , F(x) = q v ×B(x) = −q vz

j

kx
êx sin(kxx) ,

where q is the electric charge. One observes, see Fig. 1, that the force distributes the
partons in such a way that those, which positively contribute to the current in a given
filament, are focused in the filament centre while those, which negatively contribute, are
moved to the neighbouring one. Thus, the initial current grows. For a somewhat different
explanation see [11].

3. Dispersion equation

The equation of motion of the Fourier transformed chromodynamic field Aμ(k) is[
k2gμν − kμkν − Πμν(k)

]
Aν(k) = 0 , (4)

where Πμν(k) is the polarization tensor or gluon self-energy which is discussed later on.
A general plasmon dispersion equation is of the form

det
[
k2gμν − kμkν − Πμν(k)

]
= 0 . (5)

Due to the transversality of Πμν(k) (kμΠ
μν(k) = kνΠ

μν(k) = 0) not all components of
Πμν(k) are independent from each other, and consequently the dispersion equation (5),
which involves a determinant of 4 × 4 matrix, can be simplified to the determinant of
3 × 3 matrix. For this purpose, I introduce the chromoelectric permittivity tensor εlm(k)
where the indices l, m, n = 1, 2, 3 label three-vector and tensor components. Because
εlm(k)El(k)Em(k) = Πμν(k)Aμ(k)Aν(k), where E is the chromoelectric vector, the per-
mittivity can be expressed through the polarization tensor as εlm(k) = δlm + Πlm(k)/ω2.
Then, the dispersion equation gets the form

det
[
k2δlm − klkm − ω2εlm(k)

]
= 0 (6)

and the permittivity tensor εlm(k), which can be derived either within the transport theory
or diagrammatically [15], is

εnm(ω,k) = δnm +
g2

2ω

∫
d3p

(2π)3

vn

ω − kv + i0+

∂f(p)

∂pl

[(
1 − kv

ω

)
δlm +

klvm

ω

]
. (7)

Since Πμν(k) and εlm(k) are unit matrices in the colour space, the colour indices are
suppressed here.

Substituting the permittivity (7) into Eq. (6), one fully specifies the dispersion equation
(6) which provides a spectrum of quasi-particle bosonic excitations. A solution ω(k) of
Eq. (6) is called stable when Imω ≤ 0 and it is called unstable when Imω > 0. In the first
case the amplitude is constant or it exponentially decreases in time while in the second
one there is an exponential growth of the amplitude. In practice, it appears difficult to
find solutions of Eq. (6) because of rather complicated structure of the tensor (7). A
quite general analysis of the dispersion equation of anisotropic system is given in [10].
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Figure 3. The effective potential of the unstable magnetic mode as a function of magnitude
of two colour components of Aa belonging to the SU(2) gauge group. The figure is taken
from [17].

The problem simplifies as we are interested in specific modes which are expected to be
unstable. Namely, we look for solutions corresponding to the fluctuating current in the
direction of the momentum surplus and the wave vector perpendicular to it.

As previously, the momentum distribution is assumed to be elongated in the z direc-
tion, and consequently the fluctuating current also flows in this direction. The magnetic
field has a non-vanishing component along the y direction and the electric filed in the z
direction. Finally, the wave vector is parallel to the axis x, see Fig. 1. It is also assumed
that the momentum distribution obeys the mirror symmetry f(−p) = f(p), and then the
permittivity tensor has only non-vanishing diagonal components. Taking into account all
these conditions, one simplifies the dispersion equation (6) to the form

H(ω) ≡ k2
x − ω2εzz(ω, kx) = 0 . (8)

An existence of unstable solutions of Eq. (8) can be proved without solving it. The
so-called Penrose criterion [13], which follows from analytic properties of the permittivity
as a function of ω, states that the dispersion equation H(ω) = 0 has unstable solutions if
H(ω = 0) < 0. The Penrose criterion was applied to the equation (8) in [6] but a much
more general discussion of the instability condition is presented in [11]. Not entering into
details, there exist unstable modes if the momentum distribution averaged (with a proper
weight) over momentum length is anisotropic.

To solve the dispersion equation (8), the parton momentum distribution has to be
specified. Several analytic (usually approximate) solution of the dispersion equation can
be found in [6,10,11]. A typical example of the numerical solution, which gives the unstable
mode frequency in the full range of wave vectors is shown in Fig. 2 taken from [9]. The
mode is pure imaginary and γk ≡ Imω(k⊥). The parameters σ‖ and σ⊥ control the widths
of longitudinal (z) and transverse momentum distributions; the coupling is αs ≡ g2/4π =
0.3, and the effective parton density is chosen to be 6 fm−3. As seen, there is a finite
interval of wave vectors for which the unstable modes exist.
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Figure 4. Time evolution of the (scaled) energy
density (split into various electric and magnetic
components) which is carried by the chromody-
namic field. The simulation is 1+1 dimensional
and the gauge group is SU(2). The parton mo-
mentum distribution is squeezed along the z
axis. The solid line corresponds to the total
energy transferred from the particles. The fig-
ure is taken from [7].
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Figure 5. Time evolution of the ki-
netic energy of particles (upper panel)
and of the energy of electric and mag-
netic fields (lower panel) in GeV/fm3

for the U(1) and SU(2) gauge groups.
The figure is taken from [12].

4. Isotropization and Abelianization

When the instabilities grow the system becomes more isotropic because the Lorentz
force changes particle’s momenta and the growing fields curry an extra momentum. To
explain the mechanism I assume, as previously, that initially there is a momentum surplus
in the z direction. The fluctuating current tends to flow in the z direction with the wave
vector pointing in the x direction. Since the magnetic field has a y component, the Lorentz
force, which acts on partons flying along the z axis, pushes the partons in the x direction
where there is a momentum deficit. Numerical simulations discussed in the next section
show the efficiency of the mechanism.

The system isotropizes not only due to the effect of the Lorentz force but also due to
the momentum carried by the growing field. When the magnetic and electric fields are
oriented along the y and z axes, respectively, the Poynting vector points in the direction
x that is along the wave vector. Thus, the momentum carried by the fields is oriented in
the direction of the momentum deficit of particles.

Unstable modes cannot grow to infinity and even in the electron-ion plasma there are
several possible mechanisms which stop the growth [16]. In the case of the quark-gluon
plasma one suspects that non-Abelian non-linearities can play an important role here.
An elegant argument [17] suggests that the non-linearities do not stabilize the unstable
modes because the system spontaneously chooses an Abelian configuration in the course
of instability development. Let me explain the idea.
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Figure 6. Temporal evolution of the func-
tionals C̄ and φrms measured in GeV. The
figure is taken from [12].

Figure 7. Temporal evolution of the
(scaled) functionals C̄ and jrms. The fig-
ure is taken from [7].

In the Coulomb gauge the effective potential of the unstable configuration has the form

Veff [Aa] = −μ2Aa · Aa +
1

4
g2fabcfade(AbAd)(AcAe) ,

which is shown in Fig. 3 taken from [17]. The first term (with μ2 > 0) is responsible for
a very existence of the instability. The second term, which comes from the Yang-Mills
lagrangian, is of pure non-Abelian nature. The term is positive and thus it counteracts
the instability growth. However, the non-Abelian term vanishes when the potential Aa

is effectively Abelian, and consequently, such a configuration corresponds to the steepest
decrease of the effective potential. Thus, the system spontaneously abelianizes in the
course of instability growth. The abelianization is further discussed in the next section.

5. Numerical simulations

Temporal evolution of the anisotropic quark-gluon plasma has been recently studied
by means of numerical simulations [7,12,18,19]. The dynamics governed by a complete
Hard Loop action, which for anisotropic systems was derived in [20], has been simulated
in [7,18,19]. These simulations provide fully reliable information on the field dynam-
ics but particles are included as a stationary (anisotropic) background. The simulation
[12] treats the quark-gluon system completely classically: partons, which curry classical
colour charges, interact with a self-consistently generated classical chromodynamic field.
The simulations [7,12] have been effectively performed in 1+1 dimensions as the chro-
modynamic potentials depend on time and one space variable. The calculations [18,19]
represent full 1+3 dimensional dynamics. In most cases the SU(2) gauge group was stud-
ied but some SU(3) results, which are qualitatively very similar to SU(2) ones, are given
in [19]. The techniques of discretization used in [7,12,18,19] are rather different while the
initial conditions are quite similar. The initial field amplitudes are distributed according
to the Gaussian noise and the momentum distribution of partons is strongly anisotropic.

In Fig. 4, taken from [7], the results of the Hard-Loop simulation performed in 1+1
dimensions are shown. One observes exponential growth of the field energy density which
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Figure 8. Time evolution of the
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sity in the 1+3 dimensional simula-
tion. The Abelian result and that of
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is dominated, as expected, by the magnetic field which is transverse to the direction of the
momentum deficit. The growth rate appears to be equal to that of the fastest unstable
mode (γ∗). Fig. 5, taken from [12], shows results of the classical simulation on the 1+1
dimensional lattice of physical size L = 40 fm. As in Fig. 4, the amount of field energy
grows exponentially and the magnetic contribution dominates.

The Abelian (U(1)) and nonAbelian (SU(2)) results of the 1+1 dimensional simulation
presented in Fig. 5 are remarkably similar to each other. The abelianization appears
to be very efficient in 1+1 dimensions, as shown in Figs. 6, 7, taken from [12] and [7],
respectively. The authors of [12] analysed the functionals:

φrms ≡
√∫ L

0

dx

L
(Aa

yA
a
y + Aa

zA
a
z) , C̄ ≡

∫ L

0

dx

L

√
Tr[(i[Ay, Az])2]

Tr[A2
y + A2

z]
. (9)

The quantities jrms and C̄, studied in [7] and shown in Fig. 7, are fully analogous to φrms

and C̄ defined by Eq. (9) but the components of chromodynamic potential are replaced by
the respective components of the colour current. As seen in Figs. 6, 7, the field (current)
commutator decreases in time although the magnitude of field (current), as quantified by
φrms (jrms), grows.

The results of the 1+3 dimensional simulations [18,19] are qualitatively different from
those of 1+1 dimensions. As seen in Figs. 8, 9, taken from [18,19], respectively, the
growth of the field energy density is exponential only for some time, and then the growth
becomes approximately linear. The regime changes when the field’s amplitude is of order
k/g where k is the characteristic wave vector. Then, the nonAbelian effects start to be
important. Fig. 10 taken from [18] demonstrates that the abelianization is efficient in
1+3 dimensions only for a finite interval of time. The commutator C shown in Fig. 10 is
a natural generalization of the 1+1 dimensional commutator defined by Eq. (9).
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The effect of isotropization due to the action of the Lorentz force is nicely seen in the 1+1
dimensional classical simulation [12]. In Fig. 11 taken from [12] there are shown diagonal
components of the energy-momentum tensor T μν . The initial momentum distribution is
such that T xx = 0 at t = 0. As seen, T xx exponentially grows.

6. Outlook

One wonders whether the instabilities are experimentally observable in nuclear colli-
sions. The accelerated equilibration is only an indirect signal. Strong chromomagnetic
fields generated by the instabilities have been suggested [21,22] to provide a specific pat-
tern of jet’s deflections. This promising signal obviously needs further studies.

Another idea has been proposed in [23]. The quark-gluon plasma, which is locally
isotropic, manifests, as argued in [8], an approximate hydrodynamic behaviour. The az-
imuthal fluctuations can presumably distinguish the approximate hydrodynamics from
the real hydrodynamics describing a system in local equilibrium. Non-equilibrium fluc-
tuations are usually significantly larger than the equilibrium fluctuations of the same
quantity. Thus, the fluctuations of v2 produced in the course of real hydrodynamic evolu-
tion are expected to be significantly smaller than those generated in the non-equilibrium
isotropic plasma. A much simple integral measurement of azimuthal fluctuations can also
help to distinguish the equilibrium from non-equilibrium fluctuations [23].

Although an impressive progress has been achieved, the numerical simulations [7,12,
18,19] are still quite far from a real situation met in relativistic heavy-ion collisions. The
effect of back reaction of fields on the particles is fully included only in the classical 1+1
dimensional simulation [12]. The 1+3 dimensional simulations are needed as the results
of [18,19] show that the dimensionality crucially matters. The system’s expansion, which
can cut off instability growth [9], also needs to be included.

Understanding of a late stage of the instability growth, when fields are of large mag-
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nitude, is a real theoretical challenge. A mechanism of instability saturation is not well
known even in the electron-ion plasma [16]. Non-linear effects, in particular those of non-
Abelian nature, are then essential. Except the classical simulation [12], the evolution of
anisotropic quark-gluon plasma has been studied within the Hard Loop approximation.
An attempt to go beyond it has been undertaken in [24] where the higher order terms
of the effective potential of the anisotropic system have been found. Since these terms
can be negative, the instability is then driven not only by the negative quadratic term
but by the higher order terms as well. However, before a real progress in the strong field
domain can be achieved, one needs a better insight into the Hard Loop dynamics which
has appeared to be very reach [18,19].

In summary, the magnetic instabilities provide a plausible explanation of a surprisingly
short equilibration time observed in relativistic heavy-ion collisions. Fast isotropization
is a distinctive feature of the mechanism.

I am indebted to Adrian Dumitru, Cristina Manuel, Toni Rebhan, Mike Strickland and
Larry Yaffe for comments on the manuscript. A support by the Virtual Institute VI-146
of Helmholtz Gemeinschaft is also gratefully acknowledged.
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9. J. Randrup and St. Mrówczyński, Phys. Rev. C 68 (2003) 034909.
10. P. Romatschke and M. Strickland, Phys. Rev. D 68 (2003) 036004.
11. P. Arnold, J. Lenaghan and G. D. Moore, JHEP 0308 (2003) 002.
12. A. Dumitru and Y. Nara, Phys. Lett. B 621 (2005) 89.
13. N.A. Krall and A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New

York, 1973).
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