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In the late 1990’s, Back-to-Back Correlations (BBC) of boson-antiboson pairs were pre-
dict to exist if the particles masses were modified in the hot and dense medium[1], expected
to be formed in high energy nucleus-nucleus collisions. The BBC are related to in-medium
mass-modification and squeezing of the quanta involved. Not much longer after that, it
was also shown that an analogous BBC existed between fermion-antifermion pairs with
medium-modified masses[2]. A similar formalism is applicable to both BBC cases, related
to the Bogoliubov-Valatin transformations of in-medium and asymptotic operators. Both
the bosonic (bBBC) and the fermionic (fBBC) Back-to-Back Correlations are positive
and have unlimited magnitude, thus differing from the identical-particle correlations, also
known as HBT (Hanbury Brown & Twiss) correlations, which are limited for both cases,
being negative in the fermionic sector. BBC were expected to be significant for pT < 2
GeV/c. Nevertheless, already in the Ref.[1], it was shown that, if the emission process is
not sudden, even a short duration of particle emission significantly suppresses the BBC
magnitude. On the other hand, the effects of finite system sizes and of collective phe-
nomena had not been studied yet. Thus, for testing the survival and magnitude of the
effect in more realistic situations, we study the BBC when mass-modification occurs in
a finite sized, thermalized medium, considering a non-relativistically expanding fireball
with short emission duration, and evaluating the width of the back-to-back correlation
function. We show that the BBC signal indeed survives the expansion and flow effects,
with sufficient magnitude to be observed at RHIC. Some preliminary results are discussed
here and illustrated for particular cases.

Our analysis assumes the validity of local thermalization and hydrodynamics up to the
system freeze-out. We also consider H = H0 − ∫

dxdyφ(x)δM2(x−y)φ(y) as an effective
in-medium Hamiltonian, where the first term is the asymptotic (free) Hamiltonian in
the matter rest frame, and the second term describes the medium modifications. The
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scalar field φ represents quasi-particles propagating with momentum-dependent medium-
modified mass m�, related to the vacuum mass, m, by m2

�(|k|) = m2 − δM2(|k|). This
implies that the dispersion relations in the vacuum and in-medium are given, respectively,
by ω2

k = m2 + k2 and Ω2
k = m2

� + k2 = ω2
k − δM2(|k|), where Ω is the frequency of the

in-medium mode with momentum k.
The annihilation (creation) operator, b (b†), for the in-medium, thermalized quasi-

particles is related to the annihilation (creation) operator, a (a†), of the asymptotic,
observed quanta with momentum kμ = (ωk,k), by the Bogoliubov-Valatin transformation:
ak = ckbk + s∗−kb

†
−k ( a†

k = c∗kb
†
k + s−kb−k ), where ck = cosh(fk) and sk = sinh(fk);

fk = 1
2
log( ωk

Ωk
) is called squeezing parameter, since the Bogoliubov transformation creates

squeezed states from coherent ones. In cases where the particle is its own anti-particle
(for π0π0 or φφ boson pairs, for instance), the full correlation function is written as

C2(k1,k2) = 1 +
|Gc(k1,k2)|2

Gc(k1,k1)Gc(k2,k2)
+

|Gs(k1,k2)|2
Gc(k1,k1)Gc(k2,k2)

, (1)

where the first two terms correspond to the HBT correlation, and last term, represents
this additional contribution to the correlation function, i.e., the squeezing part.

For a hydrodynamical ensemble, both the chaotic and the squeezed amplitudes, Gc and
Gs, respectively, can be written in the special form derived by Makhlin and Sinyukov [3]
(see Eqs. (22) and (23) of Ref. [1]), namely

Gc(k1,k2) =
∫

d4σμ(x)

(2π)3
Kμ

1,2 ei q1,2·x
{
|c1,2|2 n1,2(x) + |s−1,−2|2 [n−1,−2(x) + 1]

}
, (2)

Gs(k1,k2) =
∫ d4σμ(x)

(2π)3
Kμ

1,2 e2 i K1,2·x
{
s∗−1,2 c2,−1 n−1,2(x) + c1,−2 s∗−2,1 [n1,−2(x) + 1]

}
. (3)

In Eq. (2) and (3), dσ4
μ(x) = d3Σμ(x, τ)F (τ)dτ is the product of the normal-oriented

volume element depending parametrically on τ (freeze-out hyper-surface parameter) and
on its invariant distribution, F (τ); σμ is the hydrodynamical freeze-out surface. In Eq.
(2), the pair momentum difference and the pair average momentum are given, respectively,

by qμ
i,j(x) = kμ

i (x) − kμ
j (x), and Kμ

i,j(x) = 1
2

[
kμ

i (x) + kμ
j (x)

]
, as in HBT; ci,j = cosh(fi,j)

and si,j = sinh(fi,j), with fi,j(x) = 1
2
log

[
Kμ

i,j(x) uμ(x)

K∗ν
i,j(x) uν(x)

]
= 1

2
log

[
ωki

(x)+ωkj
(x)

Ωki
(x)+Ωkj

(x)

]
≡ f±i,±j(x).

We are using a short-hand notation for the momenta, ±i,±j ≡ k±i,±j, with i, j = 1, 2.
For studying the expansion of the system we adopt the non-relativistic hydrodynamical

model of Ref. [4]. In this model the fireball expands in a spherically symmetric manner
with a local flow vector given by the four-velocity uμ = γ (1,v), assumed to be non-
relativistic, with γ = (1 − v2)−1/2 ≈ 1 + v2/2, where v = 〈u〉r/R, being 〈u〉 and R the
mean expansion velocity and the radius of the fireball, respectively.

In addition, we consider the Boltzmann limit of the Bose-Einstein distribution for nk,
i.e., ni,j ∼ exp [−(Kμ

i,juμ − μ(x))/T (x)], and assume a time-dependent parametric solution
of the hydrodynamical equations, i.e., μ(x)/T (x) = μ0(x)/T (x) − r2/(2R2), as in Ref.

[4]. Furthermore, we consider a smeared freeze-out, for which θ(τ−τ0)
Δτ

e−(τ−τ0)/Δτ , with
short emission Δt. This more realistic scenario has a dramatic effect on the Back-to-
Back Correlation function, as already showed in Ref.[1], by reducing severely the signal’s
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magnitude, even for a smearing of about Δτ ∼ 2 fm/c. A clear illustration of the finite
emission duration as compared to the sudden freeze-out can be seen in Ref.[5,6].

For discussing finite-size effects, we distinguish between the volume of the entire ther-
malized medium, denoted by V (with radius R), and the volume filled with mass-shifted
quanta, denoted by Vs (with radius Rs). Naturally, Vs ≤ V in the general case. In the
derivation of the expressions for Gc(1, 2) and Gs(1, 2), for simplicity, we consider that the
volumetric region where the mass m� is significantly modified is smooth and Gaussian
in shape, i.e., we introduce a three-dimensional Gaussian profile, ∼ exp [−r/(2R2)], for
representing the system volume.

In the non-relativistic limit, the accounting for the squeezing effects can be simplified
for small mass shifts (m� −m)/m � 1, such that the squeezing parameter can be written
simply as f(i, j, r) ≈ 1

2
log(m/m�). This limit is important, because in this case the co-

ordinate dependence enters the squeezing parameter f only through the possible position
dependence of the mass-shift which, in principle, could be calculated from thermal field
models in the local density approximation. Therefore, in an approximation such that
the position dependence of the in-medium mass can be neglected, the c(i, j) = c0 and
s(i, j) = s0 factors can be removed from the integrands in Eq. (2) and (3) and all what
remains to be done are Fourier transforms of Gaussian functions.
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Figure 1. The maximal BBC is illustrated
vs. m�, when the mass-shift occurs in the
entire system with radius R, i.e., Vs = V ,
for two values of the momentum k of the
back-to-back pair, with and without flow.
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Figure 2. The maximal BBC vs. m� is
shown, for mass-shift occurring only in a
smaller portion of the system, with radius
Rs < R, i.e., Vs < V . All the other vari-
ables are similar to the ones in Figure 1.

In Figures 1 and 2, we illustrate some of the results found in the non-relativistic ap-
proximation, in the particular case of weak flow coupling. Figure 1 corresponds to the
case in which the mass-shift is extended over the entire system volume, whereas in Figure



4 Sandra S. Padula

2, we show results for the squeezing occurring in a smaller portion of the system region.
In the plots, T stands for the freeze-out temperature. We see that the cases corresponding
to the absence of flow and to its inclusion produce similar results within the limits of our
illustration, and that the strength of the squeezed BBC function is proportional to the
size of the mass-shifting region. However, depending on the value of k1 = −k2 = k, there
are noticeable differences. Being so, we see that, for smaller values of k, the presence of
flow seems to slightly enhance the signal, whereas at large values of k, the non-flow case
wins. Nevertheless, the non-flow case grows faster with increasing k.

In summary, our main goal on presenting these new results here was to revive the
discussion on the search of the squeezed BBC. For fulfilling this purpose, we estimated
the strength of the squeezed BBC signal in a more realistic situation, considering the mass-
shifting in a finite region, and the particle emission occurring during a short interval. We
also considered that the system expands non-relativistically and analyze the simplified
situation of weak flow dependence of the squeezed BBC. For illustrating the effects, we
considered φφ pairs. We showed in Figures 1 and 2 the back-to-back correlation function
versus the in-medium shifted mass, m�, with pronounced maxima around m ≈ m�. We
also saw that both the non-flow and the flow cases produced similar results, and that the
BBC magnitude increases proportionally to the size of the mass-shifting region. However,
for reducing the BBC magnitude, we saw that the effect of decreasing the system size is
far less significant than the sensitivity to the spread in the time emission interval. Our
main conclusion, nevertheless, is that in any of the two cases discussed above, a sizeable
strength of the squeezed BBC signal could be seen, making it a promising effect to be
searched for experimentally at RHIC.

Naturally, in a more refined calculation, it would be mandatory to introduce a model-
based mass-shift. On top of that, it would also be essential to perform more realistic calcu-
lations with flow, in a less constrained kinematical region, while simultaneously searching
for those windows which could optimize the observation of the squeezed BBC signal. Also,
an estimate of the shape and width of the BBC around the direction k1 = −k2 = k should
be performed. Finally, for being able to make predictions closer to the experimental
conditions, it will be extremely important to obtain some feed-back on the experimental
acceptance, conditions, and restrictions that could finally lead to the BBC discovery.
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