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We study charmonia correlators at finite temperature. We analyze to what extent heavy
quarkonia correlators are sensitive to the effect of heavy quark transport.

1. Introduction

There are plenty of experimental evidence that strongly interacting matter at high en-
ergy density has been produced at RHIC [1,2]. One of the most exciting results from
RHIC so far is the large azimuthal anisotropy of light hadrons with respect to the reac-
tion plane, known as elliptic flow. The observed elliptic flow is well described by ideal
hydrodynamics (see e.g. Ref. [3] for review) suggesting early equilibration of the produced
matter and very short transport mean free path. This interpretation of the experimental
data can be challenged by measuring elliptic flow of charm and bottom mesons [4,5]. The
first experimental results show a non-zero elliptic flow for these heavy mesons. Naively,
since the quark mass is significantly larger than the temperature of the medium, the mean
free pass of heavy mesons is ∼ M/T longer than the light hadron mean free path. Quan-
titatively the mean free path is described by the heavy quark diffusion constant which can
be defined through the diffusion equation for the heavy quark number density N(x, t),
∂tN + D∇2N = 0. If the heavy quark diffusion constant D ≥ 1/T , the predicted heavy
quark elliptic flow will be too small and in contradiction with current experimental data
[6].

Kubo formulas relate hydrodynamic transport coefficients to the small frequency be-
havior of real time correlation functions. Correlation functions in real time are in turn
related to correlation functions in imaginary time by analytic continuation. Karsch and
Wyld [7] first attempted to use this connection to extract the shear viscosity of QCD
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from the lattice. More recently, additional attempts to extract the shear viscosity [8,9]
and electric conductivity [10] have been made. It turns out that Euclidean correlations
functions are remarkably insensitive to transport coefficients. For weakly coupled field
theories this has been discussed by Aarts and Martinez Resco [11]. For this reason, only
precise lattice data and a comprehensive understanding of the different contributions to
the Euclidean correlator can constrain the transport coefficients. It appears that heavy
quarkonia correlators are the likely candidates for meeting this conditions.

2. Euclidean and real time correlators

On the lattice we calculate correlation function of local meson operators ( currents )

Jh
E(x, τ) = q̄(x, τ)Γhq(x, τ) at finite temperature, Gh(k, τ, T ) =

∫
d3x eik·x

〈
Jh

E(x, τ)Jh
E(0, 0)

〉
,

with Γh being some combination of the Dirac matrices. This correlation function is re-
lated to the real time correlation functions D>

h (x, t, T ) = 〈Jh(x, t)Jh(0, 0)〉, D<
h (x, t, T ) =

〈Jh(0, 0)Jh(x, t)〉. The most important channels for our further discussion are the pseudo-
scalar, Γh = γ5 and the vector, Γh = γμ channels. In the vector channel the Euclidean
correlators are related to density-density correlator D>

NN = 〈N(x, t)N(0, 0)〉 and current-
current correlators D> ij

JJ = 〈J i(x, t)J j(0, 0)〉,
G00(x, τ, T ) = −D>

NN
(x,−iτ, T ) , Gij(x, τ, T ) = D>,ij

JJ
(x,−iτ, T ) . (1)

Similarly for the pseudo-scalar channel G5(x, τ, T ) = 〈J5
E(x, τ)J5

E(0, 0)〉 = D>
5 (x,−iτ, T ) .

The minus sign in Eq. (1) comes from the relation A0 = −iA0
E between the temporal

component of the vector in Minkowski space and Euclidean space, in particular x0 =
−ix0

E = −iτ . The spectral function is defined through Fourier transform of D<
h and D>

h

or equivalently as imaginary mart of the retarded correlator χh(k, ω): 2πρh(k, ω, T ) =
(D>

h (k, ω, T )−D<
h (k, ω, T )) = 2Imχh(k, ω, T ) . Using the Kubo-Martin Schwinger (KMS)

relation D>
h (k, t) = D<

h (k, t+i/T ), one discovers the relation between the spectral density
and the Euclidean correlator,

Gh(k, τ, T ) = (−i)r
∫ ∞

0
dω ρh(k, ω, T )K(ω, τ, T ) (2)

Here K(ω, τ, T ) =
cosh(ω(τ− 1

2T ))
sinh( ω

2T )
and r is number of zeros in the space-time indexes.

3. Lattice results on the charmonia correlators and spectral functions

Charmonia correlators have been studied in lattice QCD and the corresponding spectral
functions were reconstructed using the Maximal Entropy Method (MEM) [13–15]. These
studies showed that the 1S states (ηc and J/ψ) survive in the plasma up to temperatures
as high as 1.6Tc. Though it is quite difficult to reliably reconstruct the spectral functions,
the temperature dependence of the correlators can be determined quite precisely [15].

We calculated charmonia correlators on quenched anisotropic lattices using the Fermilab
formulation for heavy quarks [12]. Calculation were done at β = 6.5 and ξ = as/at = 4,
corresponding to temporal lattice spacing a−1

t = 14.12GeV when we set the spatial lattice
spacing as using the Sommer scale r0 = 0.5fm. We collected about 1000 gauge configura-
tions at each temperature. From Eq. (2) it is clear that the temperature dependence of
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the correlator G(k, τ, T ) comes from temperature dependence of the spectral function and
temperature dependence of the kernel K(τ, ω, T ). To separate out the trivial temperature
dependence due to the kernel K(τ, ω, T ), following [15] we introduce the reconstructed
correlator Gh

rec(k, τ, T ) =
∫ ∞
0 dω ρh(k, ω, T = 0) K(τ, ω, T ). If the charmonia spectral

function do not change across the deconfinement transition temperature Tc we expect
Gh/Gh

rec � 1. In Fig. 1 we show the temperature dependence of Gh/Gh
rec for pseudo-

scalar and vector channels at zero spatial momentum k = 0. In the vector channel we
show both sum over all spatial components

∑
i G

ii and the sum over all four components∑
μ Gμμ. We see that the temperature dependence of the vector and pseudo-scalar corre-

larors is quite different. For T = 1.5Tc we see only very small deviations from unity for
Gh/Gh

rec in the pseudo-scalar channel while significant deviations are seen in the vector
channel. In fact similar temperature dependence of the vector correlator was seen in the
previous study based on fine isotropic lattices [15,16]. This is quite unexpected as ηc and
J/ψ should have similar properties both in the vacuum and in the medium. We will give
an explanation for this difference in the next section in terms of heavy quark transport.

4. Spectral functions at low energies and heavy quark transport

As vector current is a conserved current there should be transport contribution to
the corresponding spectral function. In general the vector spectral function can be de-
composed in terms of transverse ρT (k, ω) and longitudinal ρL(k, ω) components. Since
the heavy quark mass is much larger than the temperature, M � T we can write
ρL,T (k, ω) = ρL,T

low (k, ω) + ρL,T
high(k, ω), where ρhigh(k, ω) contains the resonances and the

continuum, and is non-zero for energies ω ∼ 2M , and ρlow(k, ω) is the transport contribu-
tion. The simplest way to estimate ρlow(k, ω) is to evaluate the vector correlator at 1-loop
level [17]. In the k → 0 limit we have ρT (0, ω) = ρL(0, ω) = ρii(0, ω), and considering
small energies, ω 
 T we get ρii

low(0, ω) = χs(T ) T
M

ωδ(ω), ρ00
low(0, ω) = χs(T )ωδ(ω). Here

χs(T ) is the static charm number susceptibility, which in the limit M � T is given by

χs(T ) = 12
(

MT
2π

)3/2
e−M/T . Thus at finite temperature we expect that the

∑
i G

ii should

be enhanced by a constant contribution 3χs(T )T/M relative to its T = 0 value, while
the

∑
μ Gμμ should reduced by −χs(T )(1 − 3T/M) (recall Eq. (1)). This is exactly what

the lattice data in Fig. 1 show. Furthermore, from data on
∑

i G
ii and

∑
μ Gμμ we can

estimate that M/T � 6 at 1.5Tc. The 1-loop result for the vector correlator can be
also obtained using collisionless Boltzmann equation describing free streaming of heavy
quarks with no interaction with the plasma [17]. This 1-loop contribution happens to
dominate the transport part of the Euclidean correlator [17]. To get the transport co-
efficient we need to include the effect of heavy quark interactions with the medium. It
is very difficult problem in general. Luckily, the case of heavy quarks is special since
the time scale for diffusion, M/T 2, is much longer than any other time scale in the
problem. For this reason we can assume that the Langevin equations provide a good
macroscopic description of the dynamics of charm quarks [6]. The Langevin equations
make a definite prediction for the retarded correlator χh at small ω and thus for the
transport part of the spectral functions [17]. For the case of zero spatial momentum

k = 0 we have
ρii
low

(0,ω)

ω
= χs

T
M

1
π

η
ω2+η2 ,

ρ00
low

(0,ω)

ω
= χsδ(ω). From this equation it is

clear that to calculate the transport coefficient we have to determine the curvature of of
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Figure 1. The ratio Gh/Gh
rec for pseudo-scalar (left) and vector (right) channels at k = 0.

For the vector case we show both the sum over spatial components (filled symbols) and
all four components (open symbols).

Gii(k = 0, τ, T ) at τ = 1/(2T ) due to the low energy part of the spectral function ρii
low.

If ρii
low was the only contribution to the spectral function and η = 0 the correlator would

be constant. The question is how to determine the small curvature in Gii(k = 0, τ, T ),
arising from finite value of η, from the curvature arising from the resonance and contin-
uum contributions. This can be done by introducing a small chemical potential for the
heavy quark, μ 
 M . Since the transport contribution is proportional to χs, the small
chemical potential will enhance it by factor of cosh(μ/T ) [17]. The small charm chem-
ical potential will not affect the resonance and continuum contributions to the spectral
function to leading order in the heavy quark density, ∼ e−(M−μ)/T . Thus we expect that
δGii ≡ Gii(τ, T, μ)−Gii(τ, T, 0) � (cosh(μ/T )−1)

∫∞
0 dω ρii

low (ω))|μ=0 K(ω, τ, T ) is largely
insensitive to the high frequency behavior of the spectral function. Thus if numerical ac-
curacy of about 0.5% can be achieved for the difference δGii, the curvature and thus the
η, or equivalently D can be estimated in lattice QCD.
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